IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v547y2020ics0378437119321302.html
   My bibliography  Save this article

Fracture analysis of typical construction materials in natural time

Author

Listed:
  • Loukidis, Andronikos
  • Pasiou, Ermioni D.
  • Sarlis, Nicholas V.
  • Triantis, Dimos

Abstract

The acoustic emissions observed before the failure of typical construction materials like marble and cement mortar are analysed in natural time. The study of the variance κ1 of natural time, the entropy S, as well as the entropy S− under time reversal reveals the presence of two behaviours which can be understood either by the Burridge–Knopoff (BK) train model or the Olami–Feder–Christensen (OFC) earthquake model. The present results may be of practical importance for the identification of the time of failure of materials subjected to increasing stress.

Suggested Citation

  • Loukidis, Andronikos & Pasiou, Ermioni D. & Sarlis, Nicholas V. & Triantis, Dimos, 2020. "Fracture analysis of typical construction materials in natural time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
  • Handle: RePEc:eee:phsmap:v:547:y:2020:i:c:s0378437119321302
    DOI: 10.1016/j.physa.2019.123831
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119321302
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123831?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stavros-Richard G. Christopoulos & Nicholas V. Sarlis, 2017. "An Application of the Coherent Noise Model for the Prediction of Aftershock Magnitude Time Series," Complexity, Hindawi, vol. 2017, pages 1-27, February.
    2. Vargas, C.A. & Flores-Márquez, E.L. & Ramírez-Rojas, A. & Telesca, L., 2015. "Analysis of natural time domain entropy fluctuations of synthetic seismicity generated by a simple stick–slip system with asperities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 23-28.
    3. Mintzelas, A. & Sarlis, N.V., 2019. "Minima of the fluctuations of the order parameter of seismicity and earthquake networks based on similar activity patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    4. Sarlis, Nicholas V. & Skordas, Efthimios S. & Varotsos, Panayiotis A. & Ramírez-Rojas, Alejandro & Flores-Márquez, E. Leticia, 2018. "Natural time analysis: On the deadly Mexico M8.2 earthquake on 7 September 2017," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 625-634.
    5. Mintzelas, A. & Sarlis, N.V. & Christopoulos, S.-R.G., 2018. "Estimation of multifractality based on natural time analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 153-164.
    6. Christopoulos, S.-R.G. & Sarlis, N.V., 2014. "q-exponential relaxation of the expected avalanche size in the coherent noise model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 216-225.
    7. Vallianatos, Filippos & Michas, Georgios & Papadakis, Giorgos, 2014. "Non-extensive and natural time analysis of seismicity before the Mw6.4, October 12, 2013 earthquake in the South West segment of the Hellenic Arc," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 163-173.
    8. Vallianatos, Filippos & Michas, George & Benson, Phil & Sammonds, Peter, 2013. "Natural time analysis of critical phenomena: The case of acoustic emissions in triaxially deformed Etna basalt," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5172-5178.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stavros-Richard G. Christopoulos & Nicholas V. Sarlis, 2017. "An Application of the Coherent Noise Model for the Prediction of Aftershock Magnitude Time Series," Complexity, Hindawi, vol. 2017, pages 1-27, February.
    2. Loukidis, Andronikos & Perez-Oregon, Jennifer & Pasiou, Ermioni D. & Sarlis, Nicholas V. & Triantis, Dimos, 2021. "Similarity of fluctuations in critical systems: Acoustic emissions observed before fracture," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    3. Potirakis, S.M. & Mastrogiannis, D., 2017. "Critical features revealed in acoustic and electromagnetic emissions during fracture experiments on LiF," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 11-22.
    4. He, Xuan & Wang, Luyang & Zhu, Hongbo & Liu, Zheng, 2021. "Statistical analysis of complex weighted network for seismicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    5. Stergiopoulos, Ch. & Stavrakas, I. & Triantis, D. & Vallianatos, F. & Stonham, J., 2015. "Predicting fracture of mortar beams under three-point bending using non-extensive statistical modeling of electric emissions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 603-611.
    6. Costas A. Varotsos & Yuri A. Mazei, 2019. "Future Temperature Extremes Will Be More Harmful: A New Critical Factor for Improved Forecasts," IJERPH, MDPI, vol. 16(20), pages 1-10, October.
    7. Vallianatos, Filippos, 2018. "A non extensive view of electrical resistivity spatial distribution estimated using inverted Transient Electromagnetic responses in a karstified formation (Keritis basin, Crete, Greece)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 171-178.
    8. Efthimios S. Skordas & Stavros-Richard G. Christopoulos & Nicholas V. Sarlis, 2020. "Detrended fluctuation analysis of seismicity and order parameter fluctuations before the M7.1 Ridgecrest earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 697-711, January.
    9. Papadakis, Giorgos & Vallianatos, Filippos & Sammonds, Peter, 2016. "Non-extensive statistical physics applied to heat flow and the earthquake frequency–magnitude distribution in Greece," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 135-144.
    10. Hayat, Umar & Barkat, Adnan & Ali, Aamir & Rehman, Khaista & Sifat, Shazia & Iqbal, Talat, 2019. "Fractal analysis of shallow and intermediate-depth seismicity of Hindu Kush," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 71-82.
    11. Sarlis, Nicholas V. & Skordas, Efthimios S. & Varotsos, Panayiotis A. & Ramírez-Rojas, Alejandro & Flores-Márquez, E. Leticia, 2019. "Investigation of the temporal correlations between earthquake magnitudes before the Mexico M8.2 earthquake on 7 September 2017," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 475-483.
    12. Mendonça, Suzielli M. & Cabella, Brenno C.T. & Martinez, Alexandre S., 2024. "A Multifractal Detrended Fluctuation Analysis approach using generalized functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    13. Scherrer, T.M. & França, G.S. & Silva, R. & de Freitas, D.B. & Vilar, C.S., 2015. "Nonextensivity at the Circum-Pacific subduction zones—Preliminary studies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 426(C), pages 63-71.
    14. Chatterjee, Sucharita & Ghosh, Dipak, 2021. "Impact of Global Warming on SENSEX fluctuations — A study based on Multifractal detrended cross correlation analysis between the temperature anomalies and the SENSEX fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    15. Zhang, Fode & Shi, Yimin & Wang, Ruibing, 2017. "Geometry of the q-exponential distribution with dependent competing risks and accelerated life testing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 552-565.
    16. Pasten, Denisse & Saravia, Gonzalo & Vogel, Eugenio E. & Posadas, Antonio, 2022. "Information theory and earthquakes: Depth propagation seismicity in northern Chile," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    17. Ioannis, Koutalonis & Filippos, Vallianatos, 2020. "Observational evidence of non-extensive behavior of seismic coda waves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:547:y:2020:i:c:s0378437119321302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.