IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v426y2015icp63-71.html
   My bibliography  Save this article

Nonextensivity at the Circum-Pacific subduction zones—Preliminary studies

Author

Listed:
  • Scherrer, T.M.
  • França, G.S.
  • Silva, R.
  • de Freitas, D.B.
  • Vilar, C.S.

Abstract

Following the fragment–asperity interaction model introduced by Sotolongo-Costa and Posadas (2004) and revised by Silva et al. (2006), we try to explain the nonextensive effect in the context of the asperity model designed by Lay and Kanamori (1981). To address this issue, we used data from the NEIC catalog in the decade between 2001 and 2010, in order to investigate the so-called Circum-Pacific subduction zones. We propose a geophysical explanation to nonextensive parameter q. The results need further investigation however evidence of correlation between the nonextensive parameter and the asperity model is shown, i.e., we show that q-value is higher for areas with larger asperities and stronger coupling.

Suggested Citation

  • Scherrer, T.M. & França, G.S. & Silva, R. & de Freitas, D.B. & Vilar, C.S., 2015. "Nonextensivity at the Circum-Pacific subduction zones—Preliminary studies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 426(C), pages 63-71.
  • Handle: RePEc:eee:phsmap:v:426:y:2015:i:c:p:63-71
    DOI: 10.1016/j.physa.2014.12.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115000023
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.12.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vallianatos, Filippos & Sammonds, Peter, 2010. "Is plate tectonics a case of non-extensive thermodynamics?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4989-4993.
    2. Kalimeri, M. & Papadimitriou, C. & Balasis, G. & Eftaxias, K., 2008. "Dynamical complexity detection in pre-seismic emissions using nonadditive Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1161-1172.
    3. Telesca, Luciano, 2010. "Nonextensive analysis of seismic sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1911-1914.
    4. Vilar, C.S. & França, G.S. & Silva, R. & Alcaniz, J.S., 2007. "Nonextensivity in geological faults?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 285-290.
    5. Darooneh, Amir H. & Dadashinia, Cyruse, 2008. "Analysis of the spatial and temporal distributions between successive earthquakes: Nonextensive statistical mechanics viewpoint," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3647-3654.
    6. Darooneh, Amir H. & Mehri, Ali, 2010. "A nonextensive modification of the Gutenberg–Richter law: q-stretched exponential form," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 509-514.
    7. Abe, Sumiyoshi & Suzuki, Norikazu, 2005. "Scale-free statistics of time interval between successive earthquakes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 588-596.
    8. Abe, Sumiyoshi & Suzuki, Norikazu, 2009. "Violation of the scaling relation and non-Markovian nature of earthquake aftershocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(9), pages 1917-1920.
    9. Vallianatos, Filippos & Michas, Georgios & Papadakis, Giorgos, 2014. "Non-extensive and natural time analysis of seismicity before the Mw6.4, October 12, 2013 earthquake in the South West segment of the Hellenic Arc," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 163-173.
    10. Tsallis, Constantino, 1995. "Non-extensive thermostatistics: brief review and comments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 221(1), pages 277-290.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papadakis, Giorgos & Vallianatos, Filippos & Sammonds, Peter, 2016. "Non-extensive statistical physics applied to heat flow and the earthquake frequency–magnitude distribution in Greece," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 135-144.
    2. Ferreira, Douglas S.R. & Ribeiro, Jennifer & Oliveira, Paulo S.L. & Pimenta, André R. & Freitas, Renato P. & Papa, Andrés R.R., 2020. "Long-range correlation studies in deep earthquakes global series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    3. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    4. Eftaxias, Konstantinos & Minadakis, George & Potirakis, Stelios. M. & Balasis, Georgios, 2013. "Dynamical analogy between epileptic seizures and seismogenic electromagnetic emissions by means of nonextensive statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(3), pages 497-509.
    5. Hasumi, Tomohiro, 2009. "Hypocenter interval statistics between successive earthquakes in the two-dimensional Burridge–Knopoff model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 477-482.
    6. Chochlaki, Kalliopi & Vallianatos, Filippos & Michas, Georgios, 2018. "Global regionalized seismicity in view of Non-Extensive Statistical Physics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 276-285.
    7. Ferreira, Douglas S.R. & Papa, Andrés R.R. & Menezes, Ronaldo, 2014. "Small world picture of worldwide seismic events," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 170-180.
    8. Potirakis, Stelios M. & Zitis, Pavlos I. & Eftaxias, Konstantinos, 2013. "Dynamical analogy between economical crisis and earthquake dynamics within the nonextensive statistical mechanics framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2940-2954.
    9. Minadakis, George & Potirakis, Stylianos M. & Nomicos, Constantinos & Eftaxias, Konstantinos, 2012. "Linking electromagnetic precursors with earthquake dynamics: An approach based on nonextensive fragment and self-affine asperity models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(6), pages 2232-2244.
    10. Antonopoulos, Chris G. & Michas, George & Vallianatos, Filippos & Bountis, Tassos, 2014. "Evidence of q-exponential statistics in Greek seismicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 71-77.
    11. Papapetrou, M. & Kugiumtzis, D., 2020. "Tsallis conditional mutual information in investigating long range correlation in symbol sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    12. Cartwright-Taylor, Alexis & Vallianatos, Filippos & Sammonds, Peter, 2014. "Superstatistical view of stress-induced electric current fluctuations in rocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 368-377.
    13. Minadakis, G. & Potirakis, S.M. & Stonham, J. & Nomicos, C. & Eftaxias, K., 2012. "The role of propagating stress waves on a geophysical scale: Evidence in terms of nonextensivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5648-5657.
    14. Vallianatos, Filippos & Koutalonis, Ioannis & Chatzopoulos, Georgios, 2019. "Evidence of Tsallis entropy signature on medicane induced ambient seismic signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 35-43.
    15. da Silva, Sérgio Luiz E.F., 2021. "κ-generalised Gutenberg–Richter law and the self-similarity of earthquakes," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    16. Eftaxias, K., 2010. "Footprints of nonextensive Tsallis statistics, selfaffinity and universality in the preparation of the L’Aquila earthquake hidden in a pre-seismic EM emission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 133-140.
    17. Ioannis, Koutalonis & Filippos, Vallianatos, 2020. "Observational evidence of non-extensive behavior of seismic coda waves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    18. Potirakis, S.M. & Minadakis, G. & Eftaxias, K., 2012. "Analysis of electromagnetic pre-seismic emissions using Fisher information and Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 300-306.
    19. Liu, Guoliang, 2017. "A new physical model for earthquake time interval distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 62-65.
    20. Kalimeri, M. & Papadimitriou, C. & Balasis, G. & Eftaxias, K., 2008. "Dynamical complexity detection in pre-seismic emissions using nonadditive Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1161-1172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:426:y:2015:i:c:p:63-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.