IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i1p300-306.html
   My bibliography  Save this article

Analysis of electromagnetic pre-seismic emissions using Fisher information and Tsallis entropy

Author

Listed:
  • Potirakis, S.M.
  • Minadakis, G.
  • Eftaxias, K.

Abstract

In this work, we investigate the dynamics of electromagnetic precursors, recorded prior to significant earthquakes in Greece. The analysis of these signals is performed using Fisher information, which is a powerful tool for investigating complex and non-stationary signals. Our results point to a decrease of the precursor complexity as the main tectonic event is approaching. The results are compatible to those derived using Tsallis entropy. The sensitivity of Fisher information and Tsallis entropy are compared on the basis of the features of the underlying fracture process which they reveal.

Suggested Citation

  • Potirakis, S.M. & Minadakis, G. & Eftaxias, K., 2012. "Analysis of electromagnetic pre-seismic emissions using Fisher information and Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 300-306.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:1:p:300-306
    DOI: 10.1016/j.physa.2011.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111006091
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vilar, C.S. & França, G.S. & Silva, R. & Alcaniz, J.S., 2007. "Nonextensivity in geological faults?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 285-290.
    2. Telesca, Luciano & Lapenna, Vincenzo & Lovallo, Michele, 2005. "Fisher information measure of geoelectrical signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 351(2), pages 637-644.
    3. Aleksander Janicki & Aleksander Weron, 1994. "Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook9401, December.
    4. Telesca, Luciano & Lovallo, Michele & Hsu, Han-Lun & Chen, Chien-Chih, 2011. "Analysis of dynamics in magnetotelluric data by using the Fisher–Shannon method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1350-1355.
    5. Martin, M.T. & Perez, J. & Plastino, A., 2001. "Fisher information and nonlinear dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 291(1), pages 523-532.
    6. Telesca, Luciano & Lovallo, Michele & Ramirez-Rojas, Alejandro & Angulo-Brown, Fernando, 2009. "A nonlinear strategy to reveal seismic precursory signatures in earthquake-related self-potential signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(10), pages 2036-2040.
    7. Kalimeri, M. & Papadimitriou, C. & Balasis, G. & Eftaxias, K., 2008. "Dynamical complexity detection in pre-seismic emissions using nonadditive Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1161-1172.
    8. Lovallo, Michele & Marchese, Francesco & Pergola, Nicola & Telesca, Luciano, 2007. "Fisher information analysis of volcano-related advanced, very-high-resolution radiometer (AVHRR) thermal products time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 529-534.
    9. Carbone, Anna & Stanley, H. Eugene, 2007. "Scaling properties and entropy of long-range correlated time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(1), pages 21-24.
    10. Telesca, Luciano & Caggiano, Rosa & Lapenna, Vincenzo & Lovallo, Michele & Trippetta, Serena & Macchiato, Maria, 2008. "The Fisher information measure and Shannon entropy for particulate matter measurements," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4387-4392.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Potirakis, Stelios M. & Zitis, Pavlos I. & Eftaxias, Konstantinos, 2013. "Dynamical analogy between economical crisis and earthquake dynamics within the nonextensive statistical mechanics framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2940-2954.
    2. Kong, Xiangguo & Wang, Enyuan & He, Xueqiu & Li, Dexing & Liu, Quanlin, 2017. "Time-varying multifractal of acoustic emission about coal samples subjected to uniaxial compression," Chaos, Solitons & Fractals, Elsevier, vol. 103(C), pages 571-577.
    3. Vallianatos, Filippos, 2018. "A non extensive view of electrical resistivity spatial distribution estimated using inverted Transient Electromagnetic responses in a karstified formation (Keritis basin, Crete, Greece)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 171-178.
    4. Jayashree Bulusu & Kusumita Arora & Shubham Singh & Anusha Edara, 2023. "Simultaneous electric, magnetic and ULF anomalies associated with moderate earthquakes in Kumaun Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3925-3955, April.
    5. Restrepo, Juan F. & Schlotthauer, Gastón & Torres, María E., 2014. "Maximum approximate entropy and r threshold: A new approach for regularity changes detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 97-109.
    6. Eck, Daniel J. & McKeague, Ian W., 2016. "Central Limit Theorems under additive deformations," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 156-162.
    7. Minadakis, G. & Potirakis, S.M. & Stonham, J. & Nomicos, C. & Eftaxias, K., 2012. "The role of propagating stress waves on a geophysical scale: Evidence in terms of nonextensivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5648-5657.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Telesca, Luciano & Lovallo, Michele & Hsu, Han-Lun & Chen, Chien-Chih, 2011. "Analysis of dynamics in magnetotelluric data by using the Fisher–Shannon method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1350-1355.
    2. Telesca, Luciano & Lovallo, Michele & Alcaz, Vasile & Ilies, Ion, 2015. "Site-dependent organization structure of seismic microtremors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 541-547.
    3. Telesca, Luciano & Lovallo, Michele & Chamoli, Ashutosh & Dimri, V.P. & Srivastava, K., 2013. "Fisher–Shannon analysis of seismograms of tsunamigenic and non-tsunamigenic earthquakes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3424-3429.
    4. Telesca, Luciano & Lovallo, Michele & Mohamed, Abuo El-Ela Amin & ElGabry, Mohamed & El-hady, Sherif & Elenean, Kamal M. Abou & ElBary, Rafaat ElShafey Fat, 2012. "Informational analysis of seismic sequences by applying the Fisher Information Measure and the Shannon entropy: An application to the 2004–2010 seismicity of Aswan area (Egypt)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(9), pages 2889-2897.
    5. Moreno-Torres, Lucia Rebeca & Gomez-Vieyra, Armando & Lovallo, Michele & Ramírez-Rojas, Alejandro & Telesca, Luciano, 2018. "Investigating the interaction between rough surfaces by using the Fisher–Shannon method: Implications on interaction between tectonic plates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 560-565.
    6. Telesca, Luciano & Lovallo, Michele & Shaban, Amin & Darwich, Talal & Amacha, Nabil, 2013. "Singular spectrum analysis and Fisher–Shannon analysis of spring flow time series: An application to Anjar Spring, Lebanon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3789-3797.
    7. Telesca, Luciano & Lovallo, Michele & Babayev, Gulam & Kadirov, Fakhraddin, 2013. "Spectral and informational analysis of seismicity: An application to the 1996–2012 seismicity of the Northern Caucasus–Azerbaijan part of the greater Caucasus–Kopet Dag region," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6064-6078.
    8. Guignard, Fabian & Lovallo, Michele & Laib, Mohamed & Golay, Jean & Kanevski, Mikhail & Helbig, Nora & Telesca, Luciano, 2019. "Investigating the time dynamics of wind speed in complex terrains by using the Fisher–Shannon method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 611-621.
    9. Lovallo, Michele & Pierini, Jorge O. & Telesca, Luciano, 2012. "Power spectrum and Fisher–Shannon information plane analysis of tidal records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4711-4719.
    10. Telesca, Luciano & Lovallo, Michele & Alcaz, Vasile & Ilies, Ion, 2014. "Investigating the inner time properties of seismograms by using the Fisher Information Measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 154-161.
    11. Telesca, Luciano & Lovallo, Michele & Ramirez-Rojas, Alejandro & Angulo-Brown, Fernando, 2009. "A nonlinear strategy to reveal seismic precursory signatures in earthquake-related self-potential signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(10), pages 2036-2040.
    12. Telesca, Luciano & Lovallo, Michele & Romano, Gerardo & Konstantinou, Konstantinos I. & Hsu, Han-Lun & Chen, Chien-chih, 2014. "Using the informational Fisher–Shannon method to investigate the influence of long-term deformation processes on geoelectrical signals: An example from the Taiwan orogeny," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 340-351.
    13. Eftaxias, Konstantinos & Minadakis, George & Potirakis, Stelios. M. & Balasis, Georgios, 2013. "Dynamical analogy between epileptic seizures and seismogenic electromagnetic emissions by means of nonextensive statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(3), pages 497-509.
    14. Kalimeri, M. & Papadimitriou, C. & Balasis, G. & Eftaxias, K., 2008. "Dynamical complexity detection in pre-seismic emissions using nonadditive Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1161-1172.
    15. Papapetrou, M. & Kugiumtzis, D., 2020. "Tsallis conditional mutual information in investigating long range correlation in symbol sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    16. Potirakis, Stelios M. & Zitis, Pavlos I. & Eftaxias, Konstantinos, 2013. "Dynamical analogy between economical crisis and earthquake dynamics within the nonextensive statistical mechanics framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2940-2954.
    17. Scherrer, T.M. & França, G.S. & Silva, R. & de Freitas, D.B. & Vilar, C.S., 2015. "Nonextensivity at the Circum-Pacific subduction zones—Preliminary studies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 426(C), pages 63-71.
    18. Eftaxias, K., 2010. "Footprints of nonextensive Tsallis statistics, selfaffinity and universality in the preparation of the L’Aquila earthquake hidden in a pre-seismic EM emission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 133-140.
    19. Li, Xudong & Telesca, Luciano & Lovallo, Michele & Xu, Xuan & Zhang, Jun & Song, Weiguo, 2020. "Spectral and informational analysis of pedestrian contact force in simulated overcrowding conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    20. Minadakis, G. & Potirakis, S.M. & Stonham, J. & Nomicos, C. & Eftaxias, K., 2012. "The role of propagating stress waves on a geophysical scale: Evidence in terms of nonextensivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5648-5657.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:1:p:300-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.