IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v103y2017icp571-577.html
   My bibliography  Save this article

Time-varying multifractal of acoustic emission about coal samples subjected to uniaxial compression

Author

Listed:
  • Kong, Xiangguo
  • Wang, Enyuan
  • He, Xueqiu
  • Li, Dexing
  • Liu, Quanlin

Abstract

To explore the causes of acoustic emission (AE) mechanisms during different loading stages, the collected coal samples were subjected to uniaxial compression, and the AE counts signals were collected to analyze time-varying AE laws during loading process. Based on the time-varying multifractal theory, the multifractal characteristics with load and time were researched. The results showed that time-varying characteristics of AE corresponded well with load - time, which could reflect cracks evolution and loading process. And during different loading stages (from 20%σc to 80%σc), Δα narrowed gradually, which were related with the number and mode of fractures evolution. The time-varying multifractal characteristics revealed AE mechanisms and the proportion relation between strong and weak AE signals. Δα changes with time explained fractures compaction in different scales at the initial stage, cracks sliding and friction during the elastic deformation stage, and cracks expanding and linking at the fracture stage, while the other multifractal parameter (Δf) with time could reflect strong AE signals dominated at the initial and later stages, and the proportion of strong AE signals was almost equal to that of weak AE signals during the elastic deformation stage. The time-varying multifractal laws of AE counts about coal loading will provide significant guide to the early warning of coal deformation or fracture underground coal mines.

Suggested Citation

  • Kong, Xiangguo & Wang, Enyuan & He, Xueqiu & Li, Dexing & Liu, Quanlin, 2017. "Time-varying multifractal of acoustic emission about coal samples subjected to uniaxial compression," Chaos, Solitons & Fractals, Elsevier, vol. 103(C), pages 571-577.
  • Handle: RePEc:eee:chsofr:v:103:y:2017:i:c:p:571-577
    DOI: 10.1016/j.chaos.2017.07.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917303065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.07.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiong, Gang & Yu, Wenxian & Xia, Wenxiang & Zhang, Shuning, 2016. "Multifractal signal reconstruction based on singularity power spectrum," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 25-32.
    2. Potirakis, S.M. & Minadakis, G. & Eftaxias, K., 2012. "Analysis of electromagnetic pre-seismic emissions using Fisher information and Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 300-306.
    3. Xi, Caiping & Zhang, Shuning & Xiong, Gang & Zhao, Huichang & Yang, Yonghong, 2017. "Two-dimensional multifractal cross-correlation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 59-69.
    4. Lee, Minhyuk & Song, Jae Wook & Park, Ji Hwan & Chang, Woojin, 2017. "Asymmetric multi-fractality in the U.S. stock indices using index-based model of A-MFDFA," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 28-38.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Honghua & Zhao, Yixin & Elsworth, Derek & Jiang, Yaodong & Wang, Jiehao, 2020. "Anisotropy of acoustic emission in coal under the uniaxial loading condition," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    2. Hongru Li & Rongxi Shen & Dexing Li & Haishan Jia & Taixun Li & Tongqing Chen & Zhenhai Hou, 2019. "Acoustic Emission Multi-Parameter Analysis of Dry and Saturated Sandstone with Cracks under Uniaxial Compression," Energies, MDPI, vol. 12(10), pages 1-18, May.
    3. Xiangguo Kong & Mengzhao Zhan & Yuchu Cai & Pengfei Ji & Di He & Tianshuo Zhao & Jie Hu & Xi Lin, 2023. "Precursor Signal Identification and Acoustic Emission Characteristics of Coal Fracture Process Subjected to Uniaxial Loading," Sustainability, MDPI, vol. 15(15), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Gang & Xiong, Ziqin & Jia, Liqiong & Truong, Trieu-Kien, 2023. "Spatial multifractal spectrum distribution method for breast ultrasonic image classification," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Lahmiri, Salim & Bekiros, Stelios, 2017. "Disturbances and complexity in volatility time series," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 38-42.
    3. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    4. Restrepo, Juan F. & Schlotthauer, Gastón & Torres, María E., 2014. "Maximum approximate entropy and r threshold: A new approach for regularity changes detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 97-109.
    5. Yun-Jung Lee & Neung-Woo Kim & Ki-Hong Choi & Seong-Min Yoon, 2020. "Analysis of the Informational Efficiency of the EU Carbon Emission Trading Market: Asymmetric MF-DFA Approach," Energies, MDPI, vol. 13(9), pages 1-14, May.
    6. Naeem, Muhammad Abubakr & Karim, Sitara & Farid, Saqib & Tiwari, Aviral Kumar, 2022. "Comparing the asymmetric efficiency of dirty and clean energy markets pre and during COVID-19," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 548-562.
    7. Shahzad, Syed Jawad Hussain & Bouri, Elie & Kayani, Ghulam Mujtaba & Nasir, Rana Muhammad & Kristoufek, Ladislav, 2020. "Are clean energy stocks efficient? Asymmetric multifractal scaling behaviour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    8. Kai Meng & Khalid Khan, 2024. "Is cryptocurrency Efficient? A High-Frequency Asymmetric Multifractality Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2225-2246, June.
    9. Vallianatos, Filippos, 2018. "A non extensive view of electrical resistivity spatial distribution estimated using inverted Transient Electromagnetic responses in a karstified formation (Keritis basin, Crete, Greece)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 171-178.
    10. Liu, Junlin & Chen, Feier, 2018. "Asymmetric volatility varies in different dry bulk freight rate markets under structure breaks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 316-327.
    11. Gajardo, Gabriel & Kristjanpoller, Werner D. & Minutolo, Marcel, 2018. "Does Bitcoin exhibit the same asymmetric multifractal cross-correlations with crude oil, gold and DJIA as the Euro, Great British Pound and Yen?," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 195-205.
    12. Zhuang, Xiaoyang & Wei, Dan, 2022. "Asymmetric multifractality, comparative efficiency analysis of green finance markets: A dynamic study by index-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    13. Minadakis, G. & Potirakis, S.M. & Stonham, J. & Nomicos, C. & Eftaxias, K., 2012. "The role of propagating stress waves on a geophysical scale: Evidence in terms of nonextensivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5648-5657.
    14. Ko, Bonggyun & Song, Jae Wook, 2018. "A simple analytics framework for evaluating mean escape time in different term structures with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 398-412.
    15. Abdullah, Mohammad & Chowdhury, Mohammad Ashraful Ferdous & Sulong, Zunaidah, 2023. "Asymmetric efficiency and connectedness among green stocks, halal tourism stocks, cryptocurrencies, and commodities: Portfolio hedging implications," Resources Policy, Elsevier, vol. 81(C).
    16. Wu, Yue & Shang, Pengjian & Chen, Shijian, 2019. "Modified multifractal large deviation spectrum based on CID for financial market system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1331-1342.
    17. Sato, Yoshihiro & Mizukami, Yuka & Takeda, Mariko & Okubo, Kazuya & Kobayashi, Ryota & Munakata, Fumio, 2021. "Quantitative evaluation of morphological characteristics of self-assembled aggregates using multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    18. Lee, Minhyuk & Song, Jae Wook & Kim, Sondo & Chang, Woojin, 2018. "Asymmetric market efficiency using the index-based asymmetric-MFDFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1278-1294.
    19. Naeem, Muhammad Abubakr & Farid, Saqib & Ferrer, Román & Shahzad, Syed Jawad Hussain, 2021. "Comparative efficiency of green and conventional bonds pre- and during COVID-19: An asymmetric multifractal detrended fluctuation analysis," Energy Policy, Elsevier, vol. 153(C).
    20. Garnier, Josselin & Solna, Knut, 2019. "Emergence of turbulent epochs in oil prices," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 281-292.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:103:y:2017:i:c:p:571-577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.