IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v452y2016icp106-112.html
   My bibliography  Save this article

Analysis and improvement of vehicle information sharing networks

Author

Listed:
  • Gong, Hang
  • He, Kun
  • Qu, Yingchun
  • Wang, Pu

Abstract

Based on large-scale mobile phone data, mobility demand was estimated and locations of vehicles were inferred in the Boston area. Using the spatial distribution of vehicles, we analyze the vehicle information sharing network generated by the vehicle-to-vehicle (V2V) communications. Although a giant vehicle cluster is observed, the coverage and the efficiency of the information sharing network remain limited. Consequently, we propose a method to extend the information sharing network’s coverage by adding long-range connections between targeted vehicle clusters. Furthermore, we employ the optimal design strategy discovered in square lattice to improve the efficiency of the vehicle information sharing network.

Suggested Citation

  • Gong, Hang & He, Kun & Qu, Yingchun & Wang, Pu, 2016. "Analysis and improvement of vehicle information sharing networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 106-112.
  • Handle: RePEc:eee:phsmap:v:452:y:2016:i:c:p:106-112
    DOI: 10.1016/j.physa.2016.01.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116001096
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.01.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaolei Ma & Haiyang Yu & Yunpeng Wang & Yinhai Wang, 2015. "Large-Scale Transportation Network Congestion Evolution Prediction Using Deep Learning Theory," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
    2. Huang, Wei & Chen, Shengyong & Wang, Wanliang, 2014. "Navigation in spatial networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 132-154.
    3. Hong, Chen, 2015. "Effective usage of global dynamic information for network traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 242-247.
    4. Wang, Kai & Zhang, Yifeng & Zhou, Siyuan & Pei, Wenjiang & Wang, Shaoping & Li, Tao, 2011. "Optimal routing strategy based on the minimum information path," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2593-2600.
    5. He, Kun & Xu, Zhongzhi & Wang, Pu, 2015. "A hybrid routing model for mitigating congestion in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 431(C), pages 1-17.
    6. Jon M. Kleinberg, 2000. "Navigation in a small world," Nature, Nature, vol. 406(6798), pages 845-845, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
    2. Ding, Rui & Ujang, Norsidah & Hamid, Hussain bin & Manan, Mohd Shahrudin Abd & He, Yuou & Li, Rong & Wu, Jianjun, 2018. "Detecting the urban traffic network structure dynamics through the growth and analysis of multi-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 800-817.
    3. Davis, L.C., 2017. "Dynamic origin-to-destination routing of wirelessly connected, autonomous vehicles on a congested network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 93-102.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yury A Malkov & Alexander Ponomarenko, 2016. "Growing Homophilic Networks Are Natural Navigable Small Worlds," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-14, June.
    2. He, Kun & Xu, Zhongzhi & Wang, Pu, 2015. "A hybrid routing model for mitigating congestion in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 431(C), pages 1-17.
    3. Andrea Avena-Koenigsberger & Xiaoran Yan & Artemy Kolchinsky & Martijn P van den Heuvel & Patric Hagmann & Olaf Sporns, 2019. "A spectrum of routing strategies for brain networks," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-24, March.
    4. Kaffash, Sepideh & Nguyen, An Truong & Zhu, Joe, 2021. "Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 231(C).
    5. Peter Biddle & Paul England & Marcus Peinado & Bryan Willman, 2003. "The Darknet and the Future of Content Distribution," Levine's Working Paper Archive 618897000000000636, David K. Levine.
    6. Joost Berkhout & Bernd F. Heidergott, 2019. "Analysis of Markov Influence Graphs," Operations Research, INFORMS, vol. 67(3), pages 892-904, May.
    7. Kondor, Dániel & Mátray, Péter & Csabai, István & Vattay, Gábor, 2013. "Measuring the dimension of partially embedded networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4160-4171.
    8. Khalid Bakhshaliyev & Mehmet Hadi Gunes, 2020. "Generation of 2-mode scale-free graphs for link-level internet topology modeling," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-23, November.
    9. Nicolas Jonard & R. Cowan & B. Sanditov, 2009. "Fits and Misfits : Technological Matching and R & D Networks," DEM Discussion Paper Series 09-12, Department of Economics at the University of Luxembourg.
    10. Ma, Jinlong & Kong, Lingkang & Li, Hui-Jia, 2023. "An effective edge-adding strategy for enhancing network traffic capacity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    11. Àlex Arenas & Antonio Cabrales & Leon Danon & Albert Díaz-Guilera & Roger Guimerà & Fernando Vega-Redondo, 2010. "Optimal information transmission in organizations: search and congestion," Review of Economic Design, Springer;Society for Economic Design, vol. 14(1), pages 75-93, March.
    12. Krzysztof Cebrat & Maciej Sobczyński, 2016. "Scaling Laws in City Growth: Setting Limitations with Self-Organizing Maps," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-11, December.
    13. Lu, Zhe-Ming & Guo, Shi-Ze, 2012. "A small-world network derived from the deterministic uniform recursive tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 87-92.
    14. Maria C. Mariani & William Kubin & Peter K. Asante & Osei K. Tweneboah & Maria P. Beccar-Varela & Sebastian Jaroszewicz & Hector Gonzalez-Huizar, 2020. "Self-Similar Models: Relationship between the Diffusion Entropy Analysis, Detrended Fluctuation Analysis and Lévy Models," Mathematics, MDPI, vol. 8(7), pages 1-20, June.
    15. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    16. Alex Rutherford & Manuel Cebrian & Iyad Rahwan & Sohan Dsouza & James McInerney & Victor Naroditskiy & Matteo Venanzi & Nicholas R Jennings & J R deLara & Eero Wahlstedt & Steven U Miller, 2013. "Targeted Social Mobilization in a Global Manhunt," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.
    17. Xianwang Li & Zhongxiang Huang & Saihu Liu & Jinxin Wu & Yuxiang Zhang, 2023. "Short-Term Subway Passenger Flow Prediction Based on Time Series Adaptive Decomposition and Multi-Model Combination (IVMD-SE-MSSA)," Sustainability, MDPI, vol. 15(10), pages 1-30, May.
    18. Meysam Alizadeh & Claudio Cioffi-Revilla & Andrew Crooks, 2017. "Generating and analyzing spatial social networks," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 362-390, September.
    19. Daewon Chung & Insoo Sohn, 2023. "Neural Network Optimization Based on Complex Network Theory: A Survey," Mathematics, MDPI, vol. 11(2), pages 1-12, January.
    20. Maheshwari, Saurabh, 2020. "Network Sensor Error Quantification and Flow Reconstruction Using Deep Learning," Institute of Transportation Studies, Working Paper Series qt2qk093gx, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:452:y:2016:i:c:p:106-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.