Large-Scale Transportation Network Congestion Evolution Prediction Using Deep Learning Theory
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0119044
Download full text from publisher
References listed on IDEAS
- Wang, Jian & Wang, Ling, 2013. "Congestion analysis of traffic networks with direction-dependant heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(2), pages 392-399.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shuanfeng Zhao & Chao Wang & Pei Wei & Qingqing Zhao, 2020. "Research on the Deep Recognition of Urban Road Vehicle Flow Based on Deep Learning," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
- Isaac Oyeyemi Olayode & Lagouge Kwanda Tartibu & Modestus O. Okwu & Alessandro Severino, 2021. "Comparative Traffic Flow Prediction of a Heuristic ANN Model and a Hybrid ANN-PSO Model in the Traffic Flow Modelling of Vehicles at a Four-Way Signalized Road Intersection," Sustainability, MDPI, vol. 13(19), pages 1-28, September.
- Yan, Qing-dong & Chen, Xiu-qi & Jian, Hong-chao & Wei, Wei & Wang, Wei-da & Wang, Heng, 2022. "Design of a deep inference framework for required power forecasting and predictive control on a hybrid electric mining truck," Energy, Elsevier, vol. 238(PC).
- Wang, Minjie & Yang, Su & Sun, Yi & Gao, Jun, 2017. "Discovering urban mobility patterns with PageRank based traffic modeling and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 23-34.
- Andrzej Sobecki & Julian Szymański & David Gil & Higinio Mora, 2019. "Deep learning in the fog," International Journal of Distributed Sensor Networks, , vol. 15(8), pages 15501477198, August.
- Gong, Hang & He, Kun & Qu, Yingchun & Wang, Pu, 2016. "Analysis and improvement of vehicle information sharing networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 106-112.
- Chikaraishi, Makoto & Garg, Prateek & Varghese, Varun & Yoshizoe, Kazuki & Urata, Junji & Shiomi, Yasuhiro & Watanabe, Ryuki, 2020. "On the possibility of short-term traffic prediction during disaster with machine learning approaches: An exploratory analysis," Transport Policy, Elsevier, vol. 98(C), pages 91-104.
- Haiyang Yu & Shuai Yang & Zhihai Wu & Xiaolei Ma, 2018. "Vehicle trajectory reconstruction from automatic license plate reader data," International Journal of Distributed Sensor Networks, , vol. 14(2), pages 15501477187, February.
- Kaffash, Sepideh & Nguyen, An Truong & Zhu, Joe, 2021. "Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 231(C).
- Martinez-Pastor, Beatriz & Nogal, Maria & O’Connor, Alan & Teixeira, Rui, 2022. "Identifying critical and vulnerable links: A new approach using the Fisher information matrix," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).
- Xianwang Li & Zhongxiang Huang & Saihu Liu & Jinxin Wu & Yuxiang Zhang, 2023. "Short-Term Subway Passenger Flow Prediction Based on Time Series Adaptive Decomposition and Multi-Model Combination (IVMD-SE-MSSA)," Sustainability, MDPI, vol. 15(10), pages 1-30, May.
- Mohandu Anjaneyulu & Mohan Kubendiran, 2022. "Short-Term Traffic Congestion Prediction Using Hybrid Deep Learning Technique," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
- Maheshwari, Saurabh, 2020. "Network Sensor Error Quantification and Flow Reconstruction Using Deep Learning," Institute of Transportation Studies, Working Paper Series qt2qk093gx, Institute of Transportation Studies, UC Davis.
- Vishal Mandal & Abdul Rashid Mussah & Peng Jin & Yaw Adu-Gyamfi, 2020. "Artificial Intelligence-Enabled Traffic Monitoring System," Sustainability, MDPI, vol. 12(21), pages 1-21, November.
- Wei Yu & Jun Chen & Xingchen Yan, 2019. "Space‒Time Evolution Analysis of the Nanjing Metro Network Based on a Complex Network," Sustainability, MDPI, vol. 11(2), pages 1-17, January.
- Shen, Hui & Lin, Jane, 2020. "Investigation of crowdshipping delivery trip production with real-world data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
- Zhao, Jinqiu & Luo, Chao, 2019. "The effect of preferential teaching and memory on cooperation clusters in interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
- Krzysztof Cebrat & Maciej Sobczyński, 2016. "Scaling Laws in City Growth: Setting Limitations with Self-Organizing Maps," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-11, December.
- Tang, Jinjun & Zhang, Shen & Zhang, Wenhui & Liu, Fang & Zhang, Weibin & Wang, Yinhai, 2016. "Statistical properties of urban mobility from location-based travel networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 694-707.
- Muhammad Aqib & Rashid Mehmood & Ahmed Alzahrani & Iyad Katib & Aiiad Albeshri & Saleh M. Altowaijri, 2019. "Rapid Transit Systems: Smarter Urban Planning Using Big Data, In-Memory Computing, Deep Learning, and GPUs," Sustainability, MDPI, vol. 11(10), pages 1-33, May.
- Tuo Sun & Bo Sun & Zehao Jiang & Ruochen Hao & Jiemin Xie, 2021. "Traffic Flow Online Prediction Based on a Generative Adversarial Network with Multi-Source Data," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
- Xinhao Yang & Sheng Xu & Ze Li, 2017. "Consensus Congestion Control in Multirouter Networks Based on Multiagent System," Complexity, Hindawi, vol. 2017, pages 1-10, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0119044. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.