IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i18p4160-4171.html
   My bibliography  Save this article

Measuring the dimension of partially embedded networks

Author

Listed:
  • Kondor, Dániel
  • Mátray, Péter
  • Csabai, István
  • Vattay, Gábor

Abstract

Scaling phenomena have been intensively studied during the past decade in the context of complex networks. As part of these works, recently novel methods have appeared to measure the dimension of abstract and spatially embedded networks. In this paper we propose a new dimension measurement method for networks, which does not require global knowledge on the embedding of the nodes, instead it exploits link-wise information (link lengths, link delays or other physical quantities). Our method can be regarded as a generalization of the spectral dimension, that grasps the network’s large-scale structure through local observations made by a random walker while traversing the links. We apply the presented method to synthetic and real-world networks, including road maps, the Internet infrastructure and the Gowalla geosocial network. We analyze the theoretically and empirically designated case when the length distribution of the links has the form P(ρ)∼1/ρ. We show that while previous dimension concepts are not applicable in this case, the new dimension measure still exhibits scaling with two distinct scaling regimes. Our observations suggest that the link length distribution is not sufficient in itself to entirely control the dimensionality of complex networks, and we show that the proposed measure provides information that complements other known measures.

Suggested Citation

  • Kondor, Dániel & Mátray, Péter & Csabai, István & Vattay, Gábor, 2013. "Measuring the dimension of partially embedded networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4160-4171.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:18:p:4160-4171
    DOI: 10.1016/j.physa.2013.04.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113003592
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.04.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Drossel, B. & Schwabl, F., 1992. "Self-organized criticality in a forest-fire model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 191(1), pages 47-50.
    2. Lambiotte, Renaud & Blondel, Vincent D. & de Kerchove, Cristobald & Huens, Etienne & Prieur, Christophe & Smoreda, Zbigniew & Van Dooren, Paul, 2008. "Geographical dispersal of mobile communication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5317-5325.
    3. Simonsen, Ingve, 2005. "Diffusion and networks: A powerful combination!," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 357(2), pages 317-330.
    4. Jon M. Kleinberg, 2000. "Navigation in a small world," Nature, Nature, vol. 406(6798), pages 845-845, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meysam Alizadeh & Claudio Cioffi-Revilla & Andrew Crooks, 2017. "Generating and analyzing spatial social networks," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 362-390, September.
    2. Levy, Moshe & Goldenberg, Jacob, 2014. "The gravitational law of social interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 418-426.
    3. David Laniado & Yana Volkovich & Salvatore Scellato & Cecilia Mascolo & Andreas Kaltenbrunner, 2018. "The Impact of Geographic Distance on Online Social Interactions," Information Systems Frontiers, Springer, vol. 20(6), pages 1203-1218, December.
    4. Andrea Avena-Koenigsberger & Xiaoran Yan & Artemy Kolchinsky & Martijn P van den Heuvel & Patric Hagmann & Olaf Sporns, 2019. "A spectrum of routing strategies for brain networks," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-24, March.
    5. Peter Biddle & Paul England & Marcus Peinado & Bryan Willman, 2003. "The Darknet and the Future of Content Distribution," Levine's Working Paper Archive 618897000000000636, David K. Levine.
    6. de Benicio, Rosilda B. & Stošić, Tatijana & de Figueirêdo, P.H. & Stošić, Borko D., 2013. "Multifractal behavior of wild-land and forest fire time series in Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6367-6374.
    7. Satulovsky, Javier E., 1997. "On the synchronizing mechanism of a class of cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 237(1), pages 52-58.
    8. Joost Berkhout & Bernd F. Heidergott, 2019. "Analysis of Markov Influence Graphs," Operations Research, INFORMS, vol. 67(3), pages 892-904, May.
    9. Khalid Bakhshaliyev & Mehmet Hadi Gunes, 2020. "Generation of 2-mode scale-free graphs for link-level internet topology modeling," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-23, November.
    10. Nicolas Jonard & R. Cowan & B. Sanditov, 2009. "Fits and Misfits : Technological Matching and R & D Networks," DEM Discussion Paper Series 09-12, Department of Economics at the University of Luxembourg.
    11. Àlex Arenas & Antonio Cabrales & Leon Danon & Albert Díaz-Guilera & Roger Guimerà & Fernando Vega-Redondo, 2010. "Optimal information transmission in organizations: search and congestion," Review of Economic Design, Springer;Society for Economic Design, vol. 14(1), pages 75-93, March.
    12. Christophe Sohn & Julien Licheron & Evert Meijers, 2022. "Border cities: Out of the shadow," Papers in Regional Science, Wiley Blackwell, vol. 101(2), pages 417-438, April.
    13. Bill McKelvey & Benyamin B. Lichtenstein & Pierpaolo Andriani, 2012. "When organisations and ecosystems interact: toward a law of requisite fractality in firms," International Journal of Complexity in Leadership and Management, Inderscience Enterprises Ltd, vol. 2(1/2), pages 104-136.
    14. Yury A Malkov & Alexander Ponomarenko, 2016. "Growing Homophilic Networks Are Natural Navigable Small Worlds," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-14, June.
    15. Batac, Rene & Longjas, Anthony & Monterola, Christopher, 2012. "Statistical distributions of avalanche size and waiting times in an inter-sandpile cascade model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 616-624.
    16. Lu, Zhe-Ming & Guo, Shi-Ze, 2012. "A small-world network derived from the deterministic uniform recursive tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 87-92.
    17. Maria C. Mariani & William Kubin & Peter K. Asante & Osei K. Tweneboah & Maria P. Beccar-Varela & Sebastian Jaroszewicz & Hector Gonzalez-Huizar, 2020. "Self-Similar Models: Relationship between the Diffusion Entropy Analysis, Detrended Fluctuation Analysis and Lévy Models," Mathematics, MDPI, vol. 8(7), pages 1-20, June.
    18. Marzouk, Cyril, 2016. "Fires on large recursive trees," Stochastic Processes and their Applications, Elsevier, vol. 126(1), pages 265-289.
    19. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    20. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:18:p:4160-4171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.