IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0074628.html
   My bibliography  Save this article

Targeted Social Mobilization in a Global Manhunt

Author

Listed:
  • Alex Rutherford
  • Manuel Cebrian
  • Iyad Rahwan
  • Sohan Dsouza
  • James McInerney
  • Victor Naroditskiy
  • Matteo Venanzi
  • Nicholas R Jennings
  • J R deLara
  • Eero Wahlstedt
  • Steven U Miller

Abstract

Social mobilization, the ability to mobilize large numbers of people via social networks to achieve highly distributed tasks, has received significant attention in recent times. This growing capability, facilitated by modern communication technology, is highly relevant to endeavors which require the search for individuals that possess rare information or skills, such as finding medical doctors during disasters, or searching for missing people. An open question remains, as to whether in time-critical situations, people are able to recruit in a targeted manner, or whether they resort to so-called blind search, recruiting as many acquaintances as possible via broadcast communication. To explore this question, we examine data from our recent success in the U.S. State Department's Tag Challenge, which required locating and photographing 5 target persons in 5 different cities in the United States and Europe – in under 12 hours – based only on a single mug-shot. We find that people are able to consistently route information in a targeted fashion even under increasing time pressure. We derive an analytical model for social-media fueled global mobilization and use it to quantify the extent to which people were targeting their peers during recruitment. Our model estimates that approximately 1 in 3 messages were of targeted fashion during the most time-sensitive period of the challenge. This is a novel observation at such short temporal scales, and calls for opportunities for devising viral incentive schemes that provide distance or time-sensitive rewards to approach the target geography more rapidly. This observation of ′12 hours of separation' between individuals has applications in multiple areas from emergency preparedness, to political mobilization.

Suggested Citation

  • Alex Rutherford & Manuel Cebrian & Iyad Rahwan & Sohan Dsouza & James McInerney & Victor Naroditskiy & Matteo Venanzi & Nicholas R Jennings & J R deLara & Eero Wahlstedt & Steven U Miller, 2013. "Targeted Social Mobilization in a Global Manhunt," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.
  • Handle: RePEc:plo:pone00:0074628
    DOI: 10.1371/journal.pone.0074628
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0074628
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0074628&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0074628?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jukka-Pekka Onnela & Samuel Arbesman & Marta C González & Albert-László Barabási & Nicholas A Christakis, 2011. "Geographic Constraints on Social Network Groups," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-7, April.
    2. Jon M. Kleinberg, 2000. "Navigation in a small world," Nature, Nature, vol. 406(6798), pages 845-845, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Wang & Stuart Madnick & Xitong Li & Jeff Alstott & Chander Velu, 2015. "Effect of Media Usage Selection on Social Mobilization Speed: Facebook vs E-Mail," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meysam Alizadeh & Claudio Cioffi-Revilla & Andrew Crooks, 2017. "Generating and analyzing spatial social networks," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 362-390, September.
    2. Àlex Arenas & Antonio Cabrales & Leon Danon & Albert Díaz-Guilera & Roger Guimerà & Fernando Vega-Redondo, 2010. "Optimal information transmission in organizations: search and congestion," Review of Economic Design, Springer;Society for Economic Design, vol. 14(1), pages 75-93, March.
    3. Boris Salazar & María del Pilar Castillo, 2008. "Pobreza Urbana Y Exclusión Social De Los Desplazados," Documentos de Trabajo 4500, Universidad del Valle, CIDSE.
    4. Andrea Avena-Koenigsberger & Xiaoran Yan & Artemy Kolchinsky & Martijn P van den Heuvel & Patric Hagmann & Olaf Sporns, 2019. "A spectrum of routing strategies for brain networks," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-24, March.
    5. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    6. Douglas R. White & Jason Owen-Smith & James Moody & Walter W. Powell, 2004. "Networks, Fields and Organizations: Micro-Dynamics, Scale and Cohesive Embeddings," Computational and Mathematical Organization Theory, Springer, vol. 10(1), pages 95-117, May.
    7. Cowan, Robin & Jonard, Nicolas & Sanditov, Bulat, 2009. "Fits and Misfits: Technological Matching and R&D Networks," MERIT Working Papers 2009-042, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    8. Amos Korman & Efrat Greenwald & Ofer Feinerman, 2014. "Confidence Sharing: An Economic Strategy for Efficient Information Flows in Animal Groups," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-10, October.
    9. Shi, Xiaolin & Adamic, Lada A. & Strauss, Martin J., 2007. "Networks of strong ties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 33-47.
    10. Peter Biddle & Paul England & Marcus Peinado & Bryan Willman, 2003. "The Darknet and the Future of Content Distribution," Levine's Working Paper Archive 618897000000000636, David K. Levine.
    11. Gao, Xue & Rai, Varun, 2023. "Knowledge acquisition and innovation quality: The moderating role of geographical characteristics of technology," Technovation, Elsevier, vol. 125(C).
    12. Joost Berkhout & Bernd F. Heidergott, 2019. "Analysis of Markov Influence Graphs," Operations Research, INFORMS, vol. 67(3), pages 892-904, May.
    13. Kondor, Dániel & Mátray, Péter & Csabai, István & Vattay, Gábor, 2013. "Measuring the dimension of partially embedded networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4160-4171.
    14. Lazaros K Gallos & Fabricio Q Potiguar & José S Andrade Jr & Hernan A Makse, 2013. "IMDB Network Revisited: Unveiling Fractal and Modular Properties from a Typical Small-World Network," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    15. Khalid Bakhshaliyev & Mehmet Hadi Gunes, 2020. "Generation of 2-mode scale-free graphs for link-level internet topology modeling," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-23, November.
    16. David Laniado & Yana Volkovich & Salvatore Scellato & Cecilia Mascolo & Andreas Kaltenbrunner, 2018. "The Impact of Geographic Distance on Online Social Interactions," Information Systems Frontiers, Springer, vol. 20(6), pages 1203-1218, December.
    17. Aghabozorgi, Farshad & Khayyambashi, Mohammad Reza, 2018. "A new similarity measure for link prediction based on local structures in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 12-23.
    18. Elena Semenova, 2022. "The small world of German CEOs: a multi-method analysis of the affiliation network structure," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 26(2), pages 519-550, June.
    19. Fernando Vega-Redondo, 2008. "Network Organizations," Economics Working Papers ECO2008/09, European University Institute.
    20. Yury A Malkov & Alexander Ponomarenko, 2016. "Growing Homophilic Networks Are Natural Navigable Small Worlds," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-14, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0074628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.