IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i2p321-d1028432.html
   My bibliography  Save this article

Neural Network Optimization Based on Complex Network Theory: A Survey

Author

Listed:
  • Daewon Chung

    (Division of Electronics & Electrical Engineering, Dongguk University, Seoul 04620, Republic of Korea)

  • Insoo Sohn

    (Division of Electronics & Electrical Engineering, Dongguk University, Seoul 04620, Republic of Korea)

Abstract

Complex network science is an interdisciplinary field of study based on graph theory, statistical mechanics, and data science. With the powerful tools now available in complex network theory for the study of network topology, it is obvious that complex network topology models can be applied to enhance artificial neural network models. In this paper, we provide an overview of the most important works published within the past 10 years on the topic of complex network theory-based optimization methods. This review of the most up-to-date optimized neural network systems reveals that the fusion of complex and neural networks improves both accuracy and robustness. By setting out our review findings here, we seek to promote a better understanding of basic concepts and offer a deeper insight into the various research efforts that have led to the use of complex network theory in the optimized neural networks of today.

Suggested Citation

  • Daewon Chung & Insoo Sohn, 2023. "Neural Network Optimization Based on Complex Network Theory: A Survey," Mathematics, MDPI, vol. 11(2), pages 1-12, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:321-:d:1028432
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/2/321/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/2/321/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Perotti, Juan I. & Tamarit, Francisco A. & Cannas, Sergio A., 2006. "A scale-free neural network for modelling neurogenesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(1), pages 71-75.
    2. Jon M. Kleinberg, 2000. "Navigation in a small world," Nature, Nature, vol. 406(6798), pages 845-845, August.
    3. Jinnuo Zhu & S. B. Goyal & Chaman Verma & Maria Simona Raboaca & Traian Candin Mihaltan, 2022. "Machine Learning Human Behavior Detection Mechanism Based on Python Architecture," Mathematics, MDPI, vol. 10(17), pages 1-31, September.
    4. Xiaohu Li & Feng Xu & Jinhua Zhang & Sunan Wang, 2013. "A Multilayer Feed Forward Small-World Neural Network Controller and Its Application on Electrohydraulic Actuation System," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-8, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Àlex Arenas & Antonio Cabrales & Leon Danon & Albert Díaz-Guilera & Roger Guimerà & Fernando Vega-Redondo, 2010. "Optimal information transmission in organizations: search and congestion," Review of Economic Design, Springer;Society for Economic Design, vol. 14(1), pages 75-93, March.
    2. Boris Salazar & María del Pilar Castillo, 2008. "Pobreza Urbana Y Exclusión Social De Los Desplazados," Documentos de Trabajo 4500, Universidad del Valle, CIDSE.
    3. Andrea Avena-Koenigsberger & Xiaoran Yan & Artemy Kolchinsky & Martijn P van den Heuvel & Patric Hagmann & Olaf Sporns, 2019. "A spectrum of routing strategies for brain networks," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-24, March.
    4. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    5. Douglas R. White & Jason Owen-Smith & James Moody & Walter W. Powell, 2004. "Networks, Fields and Organizations: Micro-Dynamics, Scale and Cohesive Embeddings," Computational and Mathematical Organization Theory, Springer, vol. 10(1), pages 95-117, May.
    6. Cowan, Robin & Jonard, Nicolas & Sanditov, Bulat, 2009. "Fits and Misfits: Technological Matching and R&D Networks," MERIT Working Papers 2009-042, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    7. Amos Korman & Efrat Greenwald & Ofer Feinerman, 2014. "Confidence Sharing: An Economic Strategy for Efficient Information Flows in Animal Groups," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-10, October.
    8. Shi, Xiaolin & Adamic, Lada A. & Strauss, Martin J., 2007. "Networks of strong ties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 33-47.
    9. Peter Biddle & Paul England & Marcus Peinado & Bryan Willman, 2003. "The Darknet and the Future of Content Distribution," Levine's Working Paper Archive 618897000000000636, David K. Levine.
    10. Joost Berkhout & Bernd F. Heidergott, 2019. "Analysis of Markov Influence Graphs," Operations Research, INFORMS, vol. 67(3), pages 892-904, May.
    11. Erkaymaz, Okan & Ozer, Mahmut, 2016. "Impact of small-world network topology on the conventional artificial neural network for the diagnosis of diabetes," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 178-185.
    12. Kondor, Dániel & Mátray, Péter & Csabai, István & Vattay, Gábor, 2013. "Measuring the dimension of partially embedded networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4160-4171.
    13. Lazaros K Gallos & Fabricio Q Potiguar & José S Andrade Jr & Hernan A Makse, 2013. "IMDB Network Revisited: Unveiling Fractal and Modular Properties from a Typical Small-World Network," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    14. Khalid Bakhshaliyev & Mehmet Hadi Gunes, 2020. "Generation of 2-mode scale-free graphs for link-level internet topology modeling," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-23, November.
    15. David Laniado & Yana Volkovich & Salvatore Scellato & Cecilia Mascolo & Andreas Kaltenbrunner, 2018. "The Impact of Geographic Distance on Online Social Interactions," Information Systems Frontiers, Springer, vol. 20(6), pages 1203-1218, December.
    16. Aghabozorgi, Farshad & Khayyambashi, Mohammad Reza, 2018. "A new similarity measure for link prediction based on local structures in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 12-23.
    17. Elena Semenova, 2022. "The small world of German CEOs: a multi-method analysis of the affiliation network structure," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 26(2), pages 519-550, June.
    18. Fernando Vega-Redondo, 2008. "Network Organizations," Economics Working Papers ECO2008/09, European University Institute.
    19. Yury A Malkov & Alexander Ponomarenko, 2016. "Growing Homophilic Networks Are Natural Navigable Small Worlds," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-14, June.
    20. Jalili, Mahdi, 2011. "Error and attack tolerance of small-worldness in complex networks," Journal of Informetrics, Elsevier, vol. 5(3), pages 422-430.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:321-:d:1028432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.