Network Sensor Error Quantification and Flow Reconstruction Using Deep Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Xiaolei Ma & Haiyang Yu & Yunpeng Wang & Yinhai Wang, 2015. "Large-Scale Transportation Network Congestion Evolution Prediction Using Deep Learning Theory," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shuanfeng Zhao & Chao Wang & Pei Wei & Qingqing Zhao, 2020. "Research on the Deep Recognition of Urban Road Vehicle Flow Based on Deep Learning," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
- Gong, Hang & He, Kun & Qu, Yingchun & Wang, Pu, 2016. "Analysis and improvement of vehicle information sharing networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 106-112.
- Haiyang Yu & Shuai Yang & Zhihai Wu & Xiaolei Ma, 2018. "Vehicle trajectory reconstruction from automatic license plate reader data," International Journal of Distributed Sensor Networks, , vol. 14(2), pages 15501477187, February.
- Kaffash, Sepideh & Nguyen, An Truong & Zhu, Joe, 2021. "Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 231(C).
- Martinez-Pastor, Beatriz & Nogal, Maria & O’Connor, Alan & Teixeira, Rui, 2022. "Identifying critical and vulnerable links: A new approach using the Fisher information matrix," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).
- Mohandu Anjaneyulu & Mohan Kubendiran, 2022. "Short-Term Traffic Congestion Prediction Using Hybrid Deep Learning Technique," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
- Vishal Mandal & Abdul Rashid Mussah & Peng Jin & Yaw Adu-Gyamfi, 2020. "Artificial Intelligence-Enabled Traffic Monitoring System," Sustainability, MDPI, vol. 12(21), pages 1-21, November.
- Muhammad Aqib & Rashid Mehmood & Ahmed Alzahrani & Iyad Katib & Aiiad Albeshri & Saleh M. Altowaijri, 2019. "Rapid Transit Systems: Smarter Urban Planning Using Big Data, In-Memory Computing, Deep Learning, and GPUs," Sustainability, MDPI, vol. 11(10), pages 1-33, May.
- Tuo Sun & Bo Sun & Zehao Jiang & Ruochen Hao & Jiemin Xie, 2021. "Traffic Flow Online Prediction Based on a Generative Adversarial Network with Multi-Source Data," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
- Chikaraishi, Makoto & Garg, Prateek & Varghese, Varun & Yoshizoe, Kazuki & Urata, Junji & Shiomi, Yasuhiro & Watanabe, Ryuki, 2020. "On the possibility of short-term traffic prediction during disaster with machine learning approaches: An exploratory analysis," Transport Policy, Elsevier, vol. 98(C), pages 91-104.
- Zhao, Jinqiu & Luo, Chao, 2019. "The effect of preferential teaching and memory on cooperation clusters in interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
- Krzysztof Cebrat & Maciej Sobczyński, 2016. "Scaling Laws in City Growth: Setting Limitations with Self-Organizing Maps," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-11, December.
- Tang, Jinjun & Zhang, Shen & Zhang, Wenhui & Liu, Fang & Zhang, Weibin & Wang, Yinhai, 2016. "Statistical properties of urban mobility from location-based travel networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 694-707.
- Yan, Qing-dong & Chen, Xiu-qi & Jian, Hong-chao & Wei, Wei & Wang, Wei-da & Wang, Heng, 2022. "Design of a deep inference framework for required power forecasting and predictive control on a hybrid electric mining truck," Energy, Elsevier, vol. 238(PC).
- Wang, Minjie & Yang, Su & Sun, Yi & Gao, Jun, 2017. "Discovering urban mobility patterns with PageRank based traffic modeling and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 23-34.
- Andrzej Sobecki & Julian Szymański & David Gil & Higinio Mora, 2019. "Deep learning in the fog," International Journal of Distributed Sensor Networks, , vol. 15(8), pages 15501477198, August.
- Xianwang Li & Zhongxiang Huang & Saihu Liu & Jinxin Wu & Yuxiang Zhang, 2023. "Short-Term Subway Passenger Flow Prediction Based on Time Series Adaptive Decomposition and Multi-Model Combination (IVMD-SE-MSSA)," Sustainability, MDPI, vol. 15(10), pages 1-30, May.
- Isaac Oyeyemi Olayode & Lagouge Kwanda Tartibu & Modestus O. Okwu & Alessandro Severino, 2021. "Comparative Traffic Flow Prediction of a Heuristic ANN Model and a Hybrid ANN-PSO Model in the Traffic Flow Modelling of Vehicles at a Four-Way Signalized Road Intersection," Sustainability, MDPI, vol. 13(19), pages 1-28, September.
- Wei Yu & Jun Chen & Xingchen Yan, 2019. "Space‒Time Evolution Analysis of the Nanjing Metro Network Based on a Complex Network," Sustainability, MDPI, vol. 11(2), pages 1-17, January.
- Shen, Hui & Lin, Jane, 2020. "Investigation of crowdshipping delivery trip production with real-world data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
More about this item
Keywords
Engineering; Convolutional Neural Network; Data quality; Deep Learning; Error Estimation; Sensor; Traffic Flow;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt2qk093gx. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.