IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i7p1046-d378096.html
   My bibliography  Save this article

Self-Similar Models: Relationship between the Diffusion Entropy Analysis, Detrended Fluctuation Analysis and Lévy Models

Author

Listed:
  • Maria C. Mariani

    (Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
    Computational Science Program, University of Texas at El Paso, El Paso, TX 79968, USA)

  • William Kubin

    (Computational Science Program, University of Texas at El Paso, El Paso, TX 79968, USA)

  • Peter K. Asante

    (Computational Science Program, University of Texas at El Paso, El Paso, TX 79968, USA)

  • Osei K. Tweneboah

    (Computational Science Program, University of Texas at El Paso, El Paso, TX 79968, USA)

  • Maria P. Beccar-Varela

    (Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968, USA)

  • Sebastian Jaroszewicz

    (Comisión Nacional de Energía Atómica, Buenos Aires C1429BNP, Argentina)

  • Hector Gonzalez-Huizar

    (Department of Geological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
    Department of Seismology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Mexico)

Abstract

Financial and geophysical data, like many other low and high frequency time series, are known to exhibit some memory effects. These memory effects may be long or short, permanent or temporal depending on the event that is being modeled. The purpose of this study is to investigate the memory effects characterized by the financial market closing values and volcanic eruption time series as well as to investigate the relation between the self-similar models used and the Lévy process. This paper uses highly effective scaling methods including Lévy processes, Detrended Fluctuation Analysis (DFA) and Diffusion Entropy Analysis (DEA) to examine long-range persistence behavior in time series by estimating their respective parameters. We use the parameter of the Lévy process ( α ) characterizing the data and the scaling parameters of DFA ( H ) and DEA ( δ ) characterizing the self-similar property to generate a relationship between the three (3) aforementioned scaling methods. Findings from the numerical simulations confirm the existence of long-range persistence (long-memory behavior) in both the financial and geophysical time series. Furthermore, the numerical results from this study indicates an approximate inverse relationship between the parameter of the Lévy process and the scaling parameters of the DFA and DEA (i.e., H , δ ≈ 1 α ), which we prove analytically.

Suggested Citation

  • Maria C. Mariani & William Kubin & Peter K. Asante & Osei K. Tweneboah & Maria P. Beccar-Varela & Sebastian Jaroszewicz & Hector Gonzalez-Huizar, 2020. "Self-Similar Models: Relationship between the Diffusion Entropy Analysis, Detrended Fluctuation Analysis and Lévy Models," Mathematics, MDPI, vol. 8(7), pages 1-20, June.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1046-:d:378096
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/7/1046/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/7/1046/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. M. Viswanathan & Sergey V. Buldyrev & Shlomo Havlin & M. G. E. da Luz & E. P. Raposo & H. Eugene Stanley, 1999. "Optimizing the success of random searches," Nature, Nature, vol. 401(6756), pages 911-914, October.
    2. Mariani, M.C. & Liu, Y., 2007. "Normalized truncated Levy walks applied to the study of financial indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(2), pages 590-598.
    3. Mariani, M.C. & Florescu, I. & Beccar Varela, M.P. & Ncheuguim, E., 2009. "Long correlations and Levy models applied to the study of memory effects in high frequency (tick) data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1659-1664.
    4. Jon M. Kleinberg, 2000. "Navigation in a small world," Nature, Nature, vol. 406(6798), pages 845-845, August.
    5. Kantelhardt, Jan W & Koscielny-Bunde, Eva & Rego, Henio H.A & Havlin, Shlomo & Bunde, Armin, 2001. "Detecting long-range correlations with detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 441-454.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerlich, Nikolas & Rostek, Stefan, 2015. "Estimating serial correlation and self-similarity in financial time series—A diversification approach with applications to high frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 84-98.
    2. Mariani, M.C. & Florescu, I. & Beccar Varela, M.P. & Ncheuguim, E., 2010. "Study of memory effects in international market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1653-1664.
    3. Ferreira, Paulo & Dionísio, Andreia & Correia, José, 2018. "Non-linear dependencies in African stock markets: Was subprime crisis an important factor?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 680-687.
    4. E. Barany & M. P. Beccar Varela & I. Florescu & I. Sengupta, 2012. "Detecting market crashes by analysing long-memory effects using high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 623-634, April.
    5. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Ferreira, A.S. & Raposo, E.P. & Viswanathan, G.M. & da Luz, M.G.E., 2012. "The influence of the environment on Lévy random search efficiency: Fractality and memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3234-3246.
    7. Priscila C A da Silva & Tiago V Rosembach & Anésia A Santos & Márcio S Rocha & Marcelo L Martins, 2014. "Normal and Tumoral Melanocytes Exhibit q-Gaussian Random Search Patterns," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.
    8. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    9. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.
    10. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    11. Currenti, Gilda & Negro, Ciro Del & Lapenna, Vincenzo & Telesca, Luciano, 2005. "Fluctuation analysis of the hourly time variability of volcano-magnetic signals recorded at Mt. Etna Volcano, Sicily (Italy)," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1921-1929.
    12. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    13. Andrea Avena-Koenigsberger & Xiaoran Yan & Artemy Kolchinsky & Martijn P van den Heuvel & Patric Hagmann & Olaf Sporns, 2019. "A spectrum of routing strategies for brain networks," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-24, March.
    14. Wang, Xiao-Tian & Wu, Min & Zhou, Ze-Min & Jing, Wei-Shu, 2012. "Pricing European option with transaction costs under the fractional long memory stochastic volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1469-1480.
    15. Ma, Brian O. & Davis, Brad H. & Gillespie, David R. & VanLaerhoven, Sherah L., 2009. "Incorporating behaviour into simple models of dispersal using the biological control agent Dicyphus hesperus," Ecological Modelling, Elsevier, vol. 220(23), pages 3271-3279.
    16. Laura Raisa Miloş & Cornel Haţiegan & Marius Cristian Miloş & Flavia Mirela Barna & Claudiu Boțoc, 2020. "Multifractal Detrended Fluctuation Analysis (MF-DFA) of Stock Market Indexes. Empirical Evidence from Seven Central and Eastern European Markets," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    17. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical shape function of limit-order books in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5182-5188.
    18. Marina E Wosniack & Marcos C Santos & Ernesto P Raposo & Gandhi M Viswanathan & Marcos G E da Luz, 2017. "The evolutionary origins of Lévy walk foraging," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    19. Delignières, Didier & Marmelat, Vivien, 2014. "Strong anticipation and long-range cross-correlation: Application of detrended cross-correlation analysis to human behavioral data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 47-60.
    20. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of trends on detrended fluctuation analysis of long-range correlated noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 182-198.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1046-:d:378096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.