IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v445y2016icp138-149.html
   My bibliography  Save this article

Bayesian prediction of earthquake network based on space–time influence domain

Author

Listed:
  • Zhang, Ya
  • Zhao, Hai
  • He, Xuan
  • Pei, Fan-Dong
  • Li, Guang-Guang

Abstract

Bayesian networks (BNs) are used to analyze the conditional dependencies among different events, which are expressed by conditional probability. Scientists have already investigated the seismic activities by using BNs. Recently, earthquake network is used as a novel methodology to analyze the relationships among the earthquake events. In this paper, we propose a way to predict earthquake from a new perspective. The BN is constructed after processing, which is derived from the earthquake network based on space–time influence domain. And then, the BN parameters are learnt by using the cases which are designed from the seismic data in the period between 00:00:00 on January 1, 1992 and 00:00:00 on January 1, 2012. At last, predictions are done for the data in the period between 00:00:00 on January 1, 2012 and 00:00:00 on January 1, 2015 combining the BN with the parameters. The results show that the success rate of the prediction including delayed prediction is about 65%. It is also discovered that the predictions for some nodes have high rate of accuracy under investigation.

Suggested Citation

  • Zhang, Ya & Zhao, Hai & He, Xuan & Pei, Fan-Dong & Li, Guang-Guang, 2016. "Bayesian prediction of earthquake network based on space–time influence domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 138-149.
  • Handle: RePEc:eee:phsmap:v:445:y:2016:i:c:p:138-149
    DOI: 10.1016/j.physa.2015.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711500984X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silvia Salini & Ron Kenett, 2009. "Bayesian networks of customer satisfaction survey data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(11), pages 1177-1189.
    2. He, Xuan & Zhao, Hai & Cai, Wei & Li, Guang-Guang & Pei, Fan-Dong, 2015. "Analyzing the structure of earthquake network by k-core decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 34-43.
    3. Abe, Sumiyoshi & Suzuki, Norikazu, 2004. "Small-world structure of earthquake network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 357-362.
    4. He, Xuan & Zhao, Hai & Cai, Wei & Liu, Zheng & Si, Shuai-Zong, 2014. "Earthquake networks based on space–time influence domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 175-184.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yanjie & Ren, Tao & Liu, Yiyang & Li, Zhe, 2018. "Earthquake prediction based on community division," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 969-974.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Xuan & Zhao, Hai & Cai, Wei & Li, Guang-Guang & Pei, Fan-Dong, 2015. "Analyzing the structure of earthquake network by k-core decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 34-43.
    2. Xu, Yanjie & Ren, Tao & Liu, Yiyang & Li, Zhe, 2018. "Earthquake prediction based on community division," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 969-974.
    3. F. Cugnata & G. Perucca & S. Salini, 2017. "Bayesian networks and the assessment of universities' value added," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(10), pages 1785-1806, July.
    4. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    5. He, Xuan & Zhao, Hai & Cai, Wei & Liu, Zheng & Si, Shuai-Zong, 2014. "Earthquake networks based on space–time influence domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 175-184.
    6. Chiao, Ling-Yun, 2012. "Variation dynamics of the complex topology of a seismicity network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 497-507.
    7. Donata Marasini & Piero Quatto & Enrico Ripamonti, 2017. "Inferential confidence intervals for fuzzy analysis of teaching satisfaction," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(4), pages 1513-1529, July.
    8. Federica Cugnata & Silvia Salini, 2014. "Model-based approach for importance–performance analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3053-3064, November.
    9. Pană, Gabriel Tiberiu & Nicolin-Żaczek, Alexandru, 2023. "Motifs in earthquake networks: Romania, Italy, United States of America, and Japan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    10. P. Berchialla & S. Snidero & A. Stancu & C. Scarinzi & R. Corradetti & D. Gregori, 2012. "Understanding the epidemiology of foreign body injuries in children using a data-driven Bayesian network," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(4), pages 867-874, September.
    11. Lidia Ceriani & Chiara Gigliarano, 2020. "Multidimensional Well-Being: A Bayesian Networks Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(1), pages 237-263, November.
    12. Giancarlo MANZI & Pier Alda FERRARI, "undated". "Statistical methods for evaluating satisfaction with public services Abstract: Contrary to private enterprises, public enterprises can be unaware of the impact of their performance when providing serv," CIRIEC Working Papers 1404, CIRIEC - Université de Liège.
    13. He, Xuan & Wang, Luyang & Zhu, Hongbo & Liu, Zheng, 2021. "Statistical analysis of complex weighted network for seismicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    14. Jiménez, Abigail, 2013. "A complex network model for seismicity based on mutual information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2498-2506.
    15. Massimo Florio & Francesco Giffoni & Anna Giunta & Emanuela Sirtori, 2018. "Big science, learning, and innovation: evidence from CERN procurement," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 27(5), pages 915-936.
    16. Angelou, Konstantinos & Maragakis, Michael & Argyrakis, Panos, 2019. "A structural analysis of the patent citation network by the k-shell decomposition method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 476-483.
    17. Ferreira, Douglas S.R. & Papa, Andrés R.R. & Menezes, Ronaldo, 2014. "Small world picture of worldwide seismic events," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 170-180.
    18. Mandhani, Jyoti & Nayak, Jogendra Kumar & Parida, Manoranjan, 2020. "Interrelationships among service quality factors of Metro Rail Transit System: An integrated Bayesian networks and PLS-SEM approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 320-336.
    19. Zhang, Gui-Qing & Baró, Jordi & Cheng, Fang-Yin & Huang, He & Wang, Lin, 2019. "Avalanche dynamics of a generalized earthquake model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1463-1471.
    20. Claudia Tarantola & Paola Vicard & Ioannis Ntzoufras, 2012. "Monitoring and Improving Greek Banking Services Using Bayesian Networks: an Analysis of Mystery Shopping Data," Quaderni di Dipartimento 160, University of Pavia, Department of Economics and Quantitative Methods.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:445:y:2016:i:c:p:138-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.