IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v525y2019icp1463-1471.html
   My bibliography  Save this article

Avalanche dynamics of a generalized earthquake model

Author

Listed:
  • Zhang, Gui-Qing
  • Baró, Jordi
  • Cheng, Fang-Yin
  • Huang, He
  • Wang, Lin

Abstract

Avalanche dynamics of the Olami–Feder–Christensen (OFC) models have been extensively studied using various topology of networks. Existing works generally assume that the seismic energy is transmitted between nearest neighbors, whereas the real-world structure of tectonic plates allows the existence of long-range connections between next nearest neighbors. Here we propose a generalized OFC model to investigate the effects of avalanche dynamics through both the nearest and next nearest neighbors in the regular lattice. We find that the global parameter αij and weighted distribution mediate the power law exponent of avalanche size distribution τs(τtd), whereas the local parameter σ mediates the exponential cutoff Sc(tdc). Moreover, we find the Allan-Like and Fano-Like factors both exhibit power-law behaviors which can be seen as another feature of self-organized criticality.

Suggested Citation

  • Zhang, Gui-Qing & Baró, Jordi & Cheng, Fang-Yin & Huang, He & Wang, Lin, 2019. "Avalanche dynamics of a generalized earthquake model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1463-1471.
  • Handle: RePEc:eee:phsmap:v:525:y:2019:i:c:p:1463-1471
    DOI: 10.1016/j.physa.2019.04.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119303917
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.04.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Zhang & U. Tirnakli & L. Wang & T. Chen, 2011. "Self organized criticality in a modified Olami-Feder-Christensen model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 82(1), pages 83-89, July.
    2. Wang, Wei & Cai, Meng & Zheng, Muhua, 2018. "Social contagions on correlated multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 121-128.
    3. Abe, Sumiyoshi & Suzuki, Norikazu, 2004. "Small-world structure of earthquake network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 357-362.
    4. Wang, Wei & Chen, Xiao-Long & Zhong, Lin-Feng, 2018. "Social contagions with heterogeneous credibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 604-610.
    5. Gui-Qing Zhang & Lin Wang & Tian-Lun Chen, 2009. "Self-Organized Criticality In A Weighted Earthquake Model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 351-360.
    6. Zhang, Gui-Qing & Wang, Lin & Chen, Tian-Lun, 2009. "Analysis of self-organized criticality in weighted coupled systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1249-1256.
    7. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    8. Li, Chao & Wang, Li & Sun, Shiwen & Xia, Chengyi, 2018. "Identification of influential spreaders based on classified neighbors in real-world complex networks," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 512-523.
    9. Telesca, Luciano & Lasaponara, Rosa, 2010. "Analysis of time-scaling properties in forest-fire sequence observed in Italy," Ecological Modelling, Elsevier, vol. 221(1), pages 90-93.
    10. Lin Wang & Joseph T. Wu, 2018. "Characterizing the dynamics underlying global spread of epidemics," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    11. Zhang, Gui-Qing & Sun, Qi-Bo & Wang, Lin, 2013. "Noise-induced enhancement of network reciprocity in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 51(C), pages 31-35.
    12. F. Caruso & V. Latora & A. Pluchino & A. Rapisarda & B. Tadić, 2006. "Olami-Feder-Christensen model on different networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 243-247, March.
    13. Huang, Keke & Chen, Xiaofang & Yu, Zhaofei & Yang, Chunhua & Gui, Weihua, 2018. "Heterogeneous cooperative belief for social dilemma in multi-agent system," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 572-579.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Da & Qiu, Xiaoping & Yu, Dan & Sun, Ruoxiao & Pu, Yun, 2015. "A cellular automata model for car–truck heterogeneous traffic flow considering the car–truck following combination effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 62-72.
    2. Wu, Yu’e & Zhang, Zhipeng & Wang, Xinyu & Chang, Shuhua, 2019. "Impact of probabilistic incentives on the evolution of cooperation in complex topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 307-314.
    3. Guo, Tian & Guo, Mi & Zhang, Yan & Liang, Shuanglu, 2019. "The effect of aspiration on the evolution of cooperation in spatial multigame," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 27-32.
    4. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    5. Chen, Ning & Zhu, Xuzhen & Chen, Yanyan, 2019. "Information spreading on complex networks with general group distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 671-676.
    6. Chen, Wei & Wang, Jianwei & Yu, Fengyuan & He, Jialu & Xu, Wenshu & Dai, Wenhui, 2024. "Successful initial positioning of non-cooperative individuals in cooperative populations effectively hinders cooperation prosperity," Applied Mathematics and Computation, Elsevier, vol. 462(C).
    7. Li, Jie & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2018. "Cascading crashes induced by the individual heterogeneity in complex networks," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 182-192.
    8. Fan, Xingxing & Lin, Min, 2017. "Multiscale multifractal detrended fluctuation analysis of earthquake magnitude series of Southern California," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 225-235.
    9. Wang, Qingqing & Du, Chunpeng & Geng, Yini & Shi, Lei, 2020. "Historical payoff can not overcome the vaccination dilemma on Barabási–Albert scale-free networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    10. Chen, Yi & Ding, Shuai & Zheng, Handong & Zhang, Youtao & Yang, Shanlin, 2018. "Exploring diffusion strategies for mHealth promotion using evolutionary game model," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 148-161.
    11. Zou, Yang & Xiong, Zhongyang & Zhang, Pu & Wang, Wei, 2018. "Social contagions on multiplex networks with different reliability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 728-735.
    12. Pană, Gabriel Tiberiu & Nicolin-Żaczek, Alexandru, 2023. "Motifs in earthquake networks: Romania, Italy, United States of America, and Japan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    13. Liu, Jinzhuo & Meng, Haoran & Wang, Wei & Xie, Zhongwen & Yu, Qian, 2019. "Evolution of cooperation on independent networks: The influence of asymmetric information sharing updating mechanism," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 234-241.
    14. Zhu, Shu-Shan & Zhu, Xu-Zhen & Wang, Jian-Qun & Zhang, Zeng-Ping & Wang, Wei, 2019. "Social contagions on multiplex networks with heterogeneous population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 105-113.
    15. Geng, Yini & Shen, Chen & Hu, Kaipeng & Shi, Lei, 2018. "Impact of punishment on the evolution of cooperation in spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 540-545.
    16. Cui, Guang-Hai & Li, Ming-Chu & Fan, Xin-Xin & Deonauth, Nakema & Wang, Zhen, 2014. "Optimism when winning and cautiousness when losing promote cooperation in the spatial prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 181-189.
    17. Ferreira, Douglas S.R. & Ribeiro, Jennifer & Oliveira, Paulo S.L. & Pimenta, André R. & Freitas, Renato P. & Papa, Andrés R.R., 2020. "Long-range correlation studies in deep earthquakes global series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    18. Huang, Keke & Liu, Yishun & Zhang, Yichi & Yang, Chunhua & Wang, Zhen, 2018. "Understanding cooperative behavior of agents with heterogeneous perceptions in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 234-240.
    19. Yang, Han-Xin & Chen, Xiaojie, 2018. "Promoting cooperation by punishing minority," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 460-466.
    20. Jiang, Lincheng & Zhao, Xiang & Ge, Bin & Xiao, Weidong & Ruan, Yirun, 2019. "An efficient algorithm for mining a set of influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 58-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:525:y:2019:i:c:p:1463-1471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.