IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v147y2021ics096007792100299x.html
   My bibliography  Save this article

Novel methods for creating an earthquake complex network using a declustered catalog

Author

Listed:
  • Shahraki Ebrahimi, Ammar
  • Yavari, Elham
  • Khatibi, Toktam

Abstract

In recent years, complex networks have been used as new tools to study patterns in earthquake data. Although various methods have been developed to construct earthquake networks, there is still a long way to use this approach as a complete framework for analyzing seismicity. This research develops novel methods for building earthquake networks and investigates the patterns that they could reveal. The proposed methods use a specific declustered catalog and define nodes based on main shocks and edges on aftershocks’ period or sequence. Another method is offered to convert the resulted networks, as earthquake networks, to epicenters networks. The catalog of Iran’s earthquakes from 2006 to 2018 is used to produce earthquake networks using the above-mentioned methods. The resulted networks are scale-free and hierarchical with community structure, as expected. Some nodes’ features in the networks are shown correlated with the magnitude of the related event. Most patterns and features are preserved while converting the earthquakes network to epicenters network. Proposed methods better capture a region’s seismic features into a complex network with a more precise relationship between seismological laws and network characteristics and can help develop perfect seismicity analyzing framework based on complex networks.

Suggested Citation

  • Shahraki Ebrahimi, Ammar & Yavari, Elham & Khatibi, Toktam, 2021. "Novel methods for creating an earthquake complex network using a declustered catalog," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
  • Handle: RePEc:eee:chsofr:v:147:y:2021:i:c:s096007792100299x
    DOI: 10.1016/j.chaos.2021.110945
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792100299X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110945?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Min, Seungsik & Chang, Ki-Ho & Kim, Kyungsik & Lee, Yung-Seop, 2016. "Feature of topological properties in an earthquake network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 268-275.
    2. Abe, Sumiyoshi & Suzuki, Norikazu, 2004. "Small-world structure of earthquake network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 357-362.
    3. Baiesi, Marco, 2006. "Scaling and precursor motifs in earthquake networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 534-542.
    4. Rezaei, Soghra & Darooneh, Amir Hossein & Lotfi, Nastaran & Asaadi, Nazila, 2017. "The earthquakes network: Retrieving the empirical seismological laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 80-87.
    5. N. Lotfi & A. Darooneh, 2012. "The earthquakes network: the role of cell size," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(1), pages 1-4, January.
    6. Chorozoglou, D. & Papadimitriou, E. & Kugiumtzis, D., 2019. "Investigating small-world and scale-free structure of earthquake networks in Greece," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 143-152.
    7. S. Abe & N. Suzuki, 2005. "Scale-invariant statistics of period in directed earthquake network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 44(1), pages 115-117, March.
    8. Deyasi, Krishanu & Chakraborty, Abhijit & Banerjee, Anirban, 2017. "Network similarity and statistical analysis of earthquake seismic data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 224-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Bo & Zuo, Youcheng & Hu, Xiaoming & Cheng, Weizheng & Li, Nuohan & Liu, Qi, 2024. "Enhancing core–periphery robustness of networks against link-based attacks with imprecise information," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezaei, Soghra & Moghaddasi, Hanieh & Darooneh, Amir Hossein, 2018. "Preferential attachment in evolutionary earthquake networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 172-179.
    2. Rezaei, Soghra & Darooneh, Amir Hossein & Lotfi, Nastaran & Asaadi, Nazila, 2017. "The earthquakes network: Retrieving the empirical seismological laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 80-87.
    3. Ferreira, Douglas S.R. & Ribeiro, Jennifer & Oliveira, Paulo S.L. & Pimenta, André R. & Freitas, Renato P. & Papa, Andrés R.R., 2020. "Long-range correlation studies in deep earthquakes global series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    4. He, Xuan & Zhao, Hai & Cai, Wei & Liu, Zheng & Si, Shuai-Zong, 2014. "Earthquake networks based on space–time influence domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 175-184.
    5. Pană, Gabriel Tiberiu & Nicolin-Żaczek, Alexandru, 2023. "Motifs in earthquake networks: Romania, Italy, United States of America, and Japan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    6. He, Xuan & Wang, Luyang & Zhu, Hongbo & Liu, Zheng, 2021. "Statistical analysis of complex weighted network for seismicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    7. Ashkenazy, Yosef & Kurzon, Ittai & Asher, Eitan E., 2024. "Earthquake activity as captured using the network approach," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    8. Lotfi, Nastaran & Darooneh, Amir H., 2013. "Nonextensivity measure for earthquake networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3061-3065.
    9. Deyasi, Krishanu & Chakraborty, Abhijit & Banerjee, Anirban, 2017. "Network similarity and statistical analysis of earthquake seismic data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 224-234.
    10. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    11. Chiao, Ling-Yun, 2012. "Variation dynamics of the complex topology of a seismicity network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 497-507.
    12. He, Xuan & Zhao, Hai & Cai, Wei & Li, Guang-Guang & Pei, Fan-Dong, 2015. "Analyzing the structure of earthquake network by k-core decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 34-43.
    13. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2018. "Exploring dynamic evolution and fluctuation characteristics of air traffic flow volume time series: A single waypoint case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 560-571.
    14. Jiménez, Abigail, 2013. "A complex network model for seismicity based on mutual information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2498-2506.
    15. Xu, Yanjie & Ren, Tao & Liu, Yiyang & Li, Zhe, 2018. "Earthquake prediction based on community division," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 969-974.
    16. Ferreira, Douglas S.R. & Papa, Andrés R.R. & Menezes, Ronaldo, 2014. "Small world picture of worldwide seismic events," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 170-180.
    17. Zhang, Gui-Qing & Baró, Jordi & Cheng, Fang-Yin & Huang, He & Wang, Lin, 2019. "Avalanche dynamics of a generalized earthquake model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1463-1471.
    18. Stephan Bialonski & Martin Wendler & Klaus Lehnertz, 2011. "Unraveling Spurious Properties of Interaction Networks with Tailored Random Networks," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-13, August.
    19. Chorozoglou, D. & Papadimitriou, E. & Kugiumtzis, D., 2019. "Investigating small-world and scale-free structure of earthquake networks in Greece," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 143-152.
    20. Zhang, Ya & Zhao, Hai & He, Xuan & Pei, Fan-Dong & Li, Guang-Guang, 2016. "Bayesian prediction of earthquake network based on space–time influence domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 138-149.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:147:y:2021:i:c:s096007792100299x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.