IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v39y2012i4p867-874.html
   My bibliography  Save this article

Understanding the epidemiology of foreign body injuries in children using a data-driven Bayesian network

Author

Listed:
  • P. Berchialla
  • S. Snidero
  • A. Stancu
  • C. Scarinzi
  • R. Corradetti
  • D. Gregori

Abstract

Bayesian networks (BNs) are probabilistic expert systems which have emerged over the last few decades as a powerful data mining technique. Also, BNs have become especially popular in biomedical applications where they have been used for diagnosing diseases and studying complex cellular networks, among many other applications. In this study, we built a BN in a fully automated way in order to analyse data regarding injuries due to the inhalation, ingestion and aspiration of foreign bodies (FBs) in children. Then, a sensitivity analysis was carried out to characterize the uncertainty associated with the model. While other studies focused on characteristics such as shape, consistency and dimensions of the FBs which caused injuries, we propose an integrated environment which makes the relationships among the factors underlying the problem clear. The advantage of this approach is that it gives a picture of the influence of critical factors on the injury severity and allows for the comparison of the effect of different FB characteristics (volume, FB type, shape and consistency) and children's features (age and gender) on the risk of experiencing a hospitalization. The rates it consents to calculate provide a more rational basis for promoting care-givers’ education of the most influential risk factors regarding the adverse outcomes.

Suggested Citation

  • P. Berchialla & S. Snidero & A. Stancu & C. Scarinzi & R. Corradetti & D. Gregori, 2012. "Understanding the epidemiology of foreign body injuries in children using a data-driven Bayesian network," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(4), pages 867-874, September.
  • Handle: RePEc:taf:japsta:v:39:y:2012:i:4:p:867-874
    DOI: 10.1080/02664763.2011.623156
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2011.623156
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2011.623156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silvia Salini & Ron Kenett, 2009. "Bayesian networks of customer satisfaction survey data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(11), pages 1177-1189.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lidia Ceriani & Chiara Gigliarano, 2020. "Multidimensional Well-Being: A Bayesian Networks Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(1), pages 237-263, November.
    2. Giancarlo MANZI & Pier Alda FERRARI, "undated". "Statistical methods for evaluating satisfaction with public services Abstract: Contrary to private enterprises, public enterprises can be unaware of the impact of their performance when providing serv," CIRIEC Working Papers 1404, CIRIEC - Université de Liège.
    3. Mandhani, Jyoti & Nayak, Jogendra Kumar & Parida, Manoranjan, 2020. "Interrelationships among service quality factors of Metro Rail Transit System: An integrated Bayesian networks and PLS-SEM approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 320-336.
    4. Claudia Tarantola & Paola Vicard & Ioannis Ntzoufras, 2012. "Monitoring and Improving Greek Banking Services Using Bayesian Networks: an Analysis of Mystery Shopping Data," Quaderni di Dipartimento 160, University of Pavia, Department of Economics and Quantitative Methods.
    5. Flaminia Musella & Paola Vicard, 2015. "Object-oriented Bayesian networks for complex quality management problems," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(1), pages 115-133, January.
    6. Massimo Florio & Francesco Giffoni & Anna Giunta & Emanuela Sirtori, 2018. "Big science, learning, and innovation: evidence from CERN procurement," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 27(5), pages 915-936.
    7. F. Cugnata & G. Perucca & S. Salini, 2017. "Bayesian networks and the assessment of universities' value added," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(10), pages 1785-1806, July.
    8. Donata Marasini & Piero Quatto & Enrico Ripamonti, 2017. "Inferential confidence intervals for fuzzy analysis of teaching satisfaction," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(4), pages 1513-1529, July.
    9. Federica Cugnata & Silvia Salini, 2014. "Model-based approach for importance–performance analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3053-3064, November.
    10. Massimo Florio, 2021. "Knowledge creation: new frontiers for public investment," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 92(3), pages 379-386, September.
    11. Zhang, Ya & Zhao, Hai & He, Xuan & Pei, Fan-Dong & Li, Guang-Guang, 2016. "Bayesian prediction of earthquake network based on space–time influence domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 138-149.
    12. Pier Ferrari & Silvia Salini, 2011. "Complementary Use of Rasch Models and Nonlinear Principal Components Analysis in the Assessment of the Opinion of Europeans About Utilities," Journal of Classification, Springer;The Classification Society, vol. 28(1), pages 53-69, April.
    13. E. Cene & F. Karaman, 2015. "Analysing organic food buyers' perceptions with Bayesian networks: a case study in Turkey," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(7), pages 1572-1590, July.
    14. Di Pietro, Laura & Guglielmetti Mugion, Roberta & Musella, Flaminia & Renzi, Maria Francesca & Vicard, Paola, 2017. "Monitoring an airport check-in process by using Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 235-247.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:4:p:867-874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.