IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v641y2024ics0378437124002413.html
   My bibliography  Save this article

Targeted k-node collapse problem: Towards understanding the robustness of local k-core structure

Author

Listed:
  • Lv, Yuqian
  • Zhou, Bo
  • Wang, Jinhuan
  • Xuan, Qi

Abstract

The concept of k-core, which indicates the largest induced subgraph where each node has k or more neighbors, plays a significant role in measuring the cohesiveness and engagement of a network, and it is exploited in diverse applications, e.g., network analysis, anomaly detection, community detection, etc. However, recent studies have demonstrated the vulnerability of k-core under malicious perturbations which focus on removing the minimal number of edges to make k-core structures collapse. Despite this, to the best of our knowledge, no existing research has yet concentrated on the minimal number of edges that must be removed to collapse a specific node in the k-core. To address this issue, in this paper, we make the first attempt to study the robustness of individual nodes in k-core and propose the Targeted k-node Collapse Problem (TNCP) with three novel contributions. Firstly, we offer a general definition of TNCP problem with a proof of its NP-hardness. Secondly, in order to cover the TNCP problem, we propose a heuristic algorithm named TNC and its improved version named ATNC for implementations on large-scale networks. Finally, experiments on 20 real-world networks across various domains verify the superiority of our proposed algorithms over 6 baseline methods with detailed comparisons and analyses. Resource related to our study is publicly available at https://github.com/Yocenly/TNCP.

Suggested Citation

  • Lv, Yuqian & Zhou, Bo & Wang, Jinhuan & Xuan, Qi, 2024. "Targeted k-node collapse problem: Towards understanding the robustness of local k-core structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
  • Handle: RePEc:eee:phsmap:v:641:y:2024:i:c:s0378437124002413
    DOI: 10.1016/j.physa.2024.129732
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124002413
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129732?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huo, Long & Chen, Xin, 2022. "The waiting-time distribution for network partitions in cascading failures in power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    2. Bae, Joonhyun & Kim, Sangwook, 2014. "Identifying and ranking influential spreaders in complex networks by neighborhood coreness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 549-559.
    3. Grossman, Tal & Wool, Avishai, 1997. "Computational experience with approximation algorithms for the set covering problem," European Journal of Operational Research, Elsevier, vol. 101(1), pages 81-92, August.
    4. Benatti, Alexandre & de Arruda, Henrique Ferraz & Silva, Filipi Nascimento & Comin, César Henrique & da Fontoura Costa, Luciano, 2023. "On the stability of citation networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    5. He, Xuan & Zhao, Hai & Cai, Wei & Li, Guang-Guang & Pei, Fan-Dong, 2015. "Analyzing the structure of earthquake network by k-core decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 34-43.
    6. Al-garadi, Mohammed Ali & Varathan, Kasturi Dewi & Ravana, Sri Devi, 2017. "Identification of influential spreaders in online social networks using interaction weighted K-core decomposition method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 278-288.
    7. Angelou, Konstantinos & Maragakis, Michael & Kosmidis, Kosmas & Argyrakis, Panos, 2020. "A hybrid model for the patent citation network structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    8. Wang, Wei & Li, Wenyao & Lin, Tao & Wu, Tao & Pan, Liming & Liu, Yanbing, 2022. "Generalized k-core percolation on higher-order dependent networks," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    9. Miralles, Alicia & Comellas, Francesc & Chen, Lichao & Zhang, Zhongzhi, 2010. "Planar unclustered scale-free graphs as models for technological and biological networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1955-1964.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Yang & Tian, Hui & Cui, Yajuan & Zhu, Xuzhen & Cui, Qimei, 2023. "Influence of behavioral adoption preference based on heterogeneous population on multiple weighted networks," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    2. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan, 2023. "Higher-order interdependent percolation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    4. Faxu Li & Hui Xu & Liang Wei & Defang Wang, 2023. "RETRACTED ARTICLE: Identifying vital nodes in hypernetwork based on local centrality," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-13, January.
    5. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    6. Yu, Senbin & Gao, Liang & Xu, Lida & Gao, Zi-You, 2019. "Identifying influential spreaders based on indirect spreading in neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 418-425.
    7. Wu, Yali & Dong, Ang & Ren, Yuanguang & Jiang, Qiaoyong, 2023. "Identify influential nodes in complex networks: A k-orders entropy-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    8. Wang, Yiyuan & Pan, Shiwei & Al-Shihabi, Sameh & Zhou, Junping & Yang, Nan & Yin, Minghao, 2021. "An improved configuration checking-based algorithm for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 294(2), pages 476-491.
    9. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    10. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    11. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2023. "Pathogen diversity in meta-population networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    12. Cochran, Jeffery K. & Marquez Uribe, Alberto, 2005. "A set covering formulation for agile capacity planning within supply chains," International Journal of Production Economics, Elsevier, vol. 95(2), pages 139-149, February.
    13. Wang, Juan & Li, Chao & Xia, Chengyi, 2018. "Improved centrality indicators to characterize the nodal spreading capability in complex networks," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 388-400.
    14. Xu, Shuang & Wang, Pei, 2017. "Identifying important nodes by adaptive LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 654-664.
    15. Chen, Gaolin & Zhou, Shuming & Li, Min & Zhang, Hong, 2022. "Evaluation of community vulnerability based on communicability and structural dissimilarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    16. Wu, Tao & Guo, Yuxiao & Chen, Leiting & Liu, Yanbing, 2016. "Integrated structure investigation in complex networks by label propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 68-80.
    17. Yin, Likang & Deng, Yong, 2018. "Measuring transferring similarity via local information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 102-115.
    18. Angelou, Konstantinos & Maragakis, Michael & Argyrakis, Panos, 2019. "A structural analysis of the patent citation network by the k-shell decomposition method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 476-483.
    19. Wang, Tao & Chen, Shanshan & Wang, Xiaoxia & Wang, Jinfang, 2020. "Label propagation algorithm based on node importance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    20. Liu, Panfeng & Li, Longjie & Fang, Shiyu & Yao, Yukai, 2021. "Identifying influential nodes in social networks: A voting approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:641:y:2024:i:c:s0378437124002413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.