IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v36y2009i11p1177-1189.html
   My bibliography  Save this article

Bayesian networks of customer satisfaction survey data

Author

Listed:
  • Silvia Salini
  • Ron Kenett

Abstract

A Bayesian network (BN) is a probabilistic graphical model that represents a set of variables and their probabilistic dependencies. Formally, BNs are directed acyclic graphs whose nodes represent variables, and whose arcs encode the conditional dependencies among the variables. Nodes can represent any kind of variable, be it a measured parameter, a latent variable, or a hypothesis. They are not restricted to represent random variables, which form the “Bayesian” aspect of a BN. Efficient algorithms exist that perform inference and learning in BNs. BNs that model sequences of variables are called dynamic BNs. In this context, [A. Harel, R. Kenett, and F. Ruggeri, Modeling web usability diagnostics on the basis of usage statistics, in Statistical Methods in eCommerce Research, W. Jank and G. Shmueli, eds., Wiley, 2008] provide a comparison between Markov Chains and BNs in the analysis of web usability from e-commerce data. A comparison of regression models, structural equation models, and BNs is presented in Anderson et al. [R.D. Anderson, R.D. Mackoy, V.B. Thompson, and G. Harrell, A bayesian network estimation of the service-profit Chain for transport service satisfaction, Decision Sciences 35(4), (2004), pp. 665-689]. In this article we apply BNs to the analysis of customer satisfaction surveys and demonstrate the potential of the approach. In particular, BNs offer advantages in implementing models of cause and effect over other statistical techniques designed primarily for testing hypotheses. Other advantages include the ability to conduct probabilistic inference for prediction and diagnostic purposes with an output that can be intuitively understood by managers.

Suggested Citation

  • Silvia Salini & Ron Kenett, 2009. "Bayesian networks of customer satisfaction survey data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(11), pages 1177-1189.
  • Handle: RePEc:taf:japsta:v:36:y:2009:i:11:p:1177-1189
    DOI: 10.1080/02664760802587982
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760802587982
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760802587982?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lauritzen, Steffen L., 1995. "The EM algorithm for graphical association models with missing data," Computational Statistics & Data Analysis, Elsevier, vol. 19(2), pages 191-201, February.
    2. Fiorio, Carlo V. & Florio, M. & Salini, S. & Ferrari, P.A., 2007. "Consumers' Attitudes on Services of General Interest in the EU: Accessibility, Price and Quality 2000-2004," Privatisation Regulation Corporate Governance Working Papers 12195, Fondazione Eni Enrico Mattei (FEEM).
    3. Ron S. Kenett, 2011. "On the planning and design of sample surveys," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2681-2681, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimo Florio, 2021. "Knowledge creation: new frontiers for public investment," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 92(3), pages 379-386, September.
    2. F. Cugnata & G. Perucca & S. Salini, 2017. "Bayesian networks and the assessment of universities' value added," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(10), pages 1785-1806, July.
    3. P. Berchialla & S. Snidero & A. Stancu & C. Scarinzi & R. Corradetti & D. Gregori, 2012. "Understanding the epidemiology of foreign body injuries in children using a data-driven Bayesian network," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(4), pages 867-874, September.
    4. Claudia Tarantola & Paola Vicard & Ioannis Ntzoufras, 2012. "Monitoring and Improving Greek Banking Services Using Bayesian Networks: an Analysis of Mystery Shopping Data," Quaderni di Dipartimento 160, University of Pavia, Department of Economics and Quantitative Methods.
    5. Lidia Ceriani & Chiara Gigliarano, 2020. "Multidimensional Well-Being: A Bayesian Networks Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(1), pages 237-263, November.
    6. Giancarlo MANZI & Pier Alda FERRARI, "undated". "Statistical methods for evaluating satisfaction with public services Abstract: Contrary to private enterprises, public enterprises can be unaware of the impact of their performance when providing serv," CIRIEC Working Papers 1404, CIRIEC - Université de Liège.
    7. Flaminia Musella & Paola Vicard, 2015. "Object-oriented Bayesian networks for complex quality management problems," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(1), pages 115-133, January.
    8. Massimo Florio & Francesco Giffoni & Anna Giunta & Emanuela Sirtori, 2018. "Big science, learning, and innovation: evidence from CERN procurement," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 27(5), pages 915-936.
    9. Donata Marasini & Piero Quatto & Enrico Ripamonti, 2017. "Inferential confidence intervals for fuzzy analysis of teaching satisfaction," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(4), pages 1513-1529, July.
    10. Di Pietro, Laura & Guglielmetti Mugion, Roberta & Musella, Flaminia & Renzi, Maria Francesca & Vicard, Paola, 2017. "Monitoring an airport check-in process by using Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 235-247.
    11. Federica Cugnata & Silvia Salini, 2014. "Model-based approach for importance–performance analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3053-3064, November.
    12. Zhang, Ya & Zhao, Hai & He, Xuan & Pei, Fan-Dong & Li, Guang-Guang, 2016. "Bayesian prediction of earthquake network based on space–time influence domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 138-149.
    13. Mandhani, Jyoti & Nayak, Jogendra Kumar & Parida, Manoranjan, 2020. "Interrelationships among service quality factors of Metro Rail Transit System: An integrated Bayesian networks and PLS-SEM approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 320-336.
    14. Pier Ferrari & Silvia Salini, 2011. "Complementary Use of Rasch Models and Nonlinear Principal Components Analysis in the Assessment of the Opinion of Europeans About Utilities," Journal of Classification, Springer;The Classification Society, vol. 28(1), pages 53-69, April.
    15. E. Cene & F. Karaman, 2015. "Analysing organic food buyers' perceptions with Bayesian networks: a case study in Turkey," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(7), pages 1572-1590, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuroda, Masahiro & Sakakihara, Michio & Geng, Zhi, 2008. "Acceleration of the EM and ECM algorithms using the Aitken [delta]2 method for log-linear models with partially classified data," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2332-2338, October.
    2. Chen, Yen-Liang & Hu, Hui-Ling, 2006. "An overlapping cluster algorithm to provide non-exhaustive clustering," European Journal of Operational Research, Elsevier, vol. 173(3), pages 762-780, September.
    3. Croft, J. & Smith, J. Q., 2003. "Discrete mixtures in Bayesian networks with hidden variables: a latent time budget example," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 539-547, January.
    4. Giancarlo MANZI & Pier Alda FERRARI, "undated". "Statistical methods for evaluating satisfaction with public services Abstract: Contrary to private enterprises, public enterprises can be unaware of the impact of their performance when providing serv," CIRIEC Working Papers 1404, CIRIEC - Université de Liège.
    5. Fazia Abdat & Sylvie Leclercq & Xavier Cuny & Claire Tissot, 2014. "Extracting recurrent scenarios from narrative texts using a Bayesian network: Application to serious occupational accidents with movement disturbance," Post-Print hal-01578382, HAL.
    6. Pier Ferrari & Laura Pagani & Carlo Fiorio, 2011. "A Two-Step Approach to Analyze Satisfaction Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 104(3), pages 545-554, December.
    7. Esma Nur Cinicioglu & Gül Huyugüzel Kışla & A. Özlem Önder & Y. Gülnur Muradoğlu, 2024. "The Changing Behavior of the European Credit Default Swap Spreads During the Covid-19 Pandemic: A Bayesian Network Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 1213-1254, March.
    8. Hongyu Wang & Jian Tang & Pengpeng Xu & Rundong Chen & Haona Yao, 2022. "Research on the Influence Mechanism of Street Vitality in Mountainous Cities Based on a Bayesian Network: A Case Study of the Main Urban Area of Chongqing," Land, MDPI, vol. 11(5), pages 1-22, May.
    9. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2013. "Modeling Differential Item Functioning Using a Generalization of the Multiple-Group Bifactor Model," Journal of Educational and Behavioral Statistics, , vol. 38(1), pages 32-60, February.
    10. Claudia Tarantola & Paola Vicard & Ioannis Ntzoufras, 2012. "Monitoring and Improving Greek Banking Services Using Bayesian Networks: an Analysis of Mystery Shopping Data," Quaderni di Dipartimento 160, University of Pavia, Department of Economics and Quantitative Methods.
    11. Fiorio, Carlo V. & Florio, Massimo & Perucca, Giovanni, 2013. "User satisfaction and the organization of local public transport: Evidence from European cities," Transport Policy, Elsevier, vol. 29(C), pages 209-218.
    12. Sheehan, Barry & Murphy, Finbarr & Mullins, Martin & Ryan, Cian, 2019. "Connected and autonomous vehicles: A cyber-risk classification framework," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 523-536.
    13. Astrid Kemperman & Pauline van den Berg & Minou Weijs-Perrée & Kevin Uijtdewillegen, 2019. "Loneliness of Older Adults: Social Network and the Living Environment," IJERPH, MDPI, vol. 16(3), pages 1-16, January.
    14. Jie Fan & Baoyin Liu & Xiaodong Ming & Yong Sun & Lianjie Qin, 2022. "The amplification effect of unreasonable human behaviours on natural disasters," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-10, December.
    15. Ugur, Mehmet, 2009. "Liberalisation in a world of second best: evidence on European network industries," MPRA Paper 17873, University Library of Munich, Germany, revised 13 Oct 2009.
    16. Garvey, Myles D. & Carnovale, Steven & Yeniyurt, Sengun, 2015. "An analytical framework for supply network risk propagation: A Bayesian network approach," European Journal of Operational Research, Elsevier, vol. 243(2), pages 618-627.
    17. Kim, Seong-Ho & Kim, Sung-Ho, 2006. "A divide-and-conquer approach in applying EM for large recursive models with incomplete categorical data," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 611-641, February.
    18. Rui Han & Shiqi Yang, 2023. "A Study on Industrial Heritage Renewal Strategy Based on Hybrid Bayesian Network," Sustainability, MDPI, vol. 15(13), pages 1-32, July.
    19. Simona GRASSI & Riccardo PUGLISI, 2008. "Regulation and consumer satisfaction from public services: an individual fixed effects approach," Departmental Working Papers 2008-21, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    20. Svend Rasmussen & Anders L. Madsen & Mogens Lund, 2013. "Bayesian network as a modelling tool for risk management in agriculture," IFRO Working Paper 2013/12, University of Copenhagen, Department of Food and Resource Economics.

    More about this item

    Keywords

    Bayesian networks; customer satisfaction; Eurobarometer; service quality;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods
    • C93 - Mathematical and Quantitative Methods - - Design of Experiments - - - Field Experiments

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:36:y:2009:i:11:p:1177-1189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.