IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v437y2023ics0096300322006233.html
   My bibliography  Save this article

Personalized recommender systems based on social relationships and historical behaviors

Author

Listed:
  • Lee, Yan-Li
  • Zhou, Tao
  • Yang, Kexin
  • Du, Yajun
  • Pan, Liming

Abstract

Recommender systems have a wide range of applications in the age suffering information overload. A promising way to design better recommender systems in the presence of ubiquitous social media is to utilize social relationships in recommendation algorithms, named social recommendation. One critical challenge in social recommendation is how to mine valuable information intrinsic to social relationships and integrate such information into the algorithm design. In this paper, we argue that both social relationships and historical behaviors are affected by the same implicit factors. For example, due to the existence of implicit factors such as peer influence or common interests in social networks, users with similar implicit factors will have a high probability to become friends and collect similar objects. Accordingly, we propose a recommendation algorithm that jointly utilizes social relationships and historical behaviors, based on the extended linear optimization technique. We test the performance of our algorithm for four groups of users on real networks, including all users, active users, inactive users and cold-start users. Results show that, in all the above four scenarios, the proposed algorithm performs overall best subject to accuracy and diversity metrics compared with the benchmarks. In particular, the algorithm remarkably improves the recommendation performance for cold-start users. Further analysis shows that the contribution of social relationships depends on the coupling strength between social relationships and historical behaviors.

Suggested Citation

  • Lee, Yan-Li & Zhou, Tao & Yang, Kexin & Du, Yajun & Pan, Liming, 2023. "Personalized recommender systems based on social relationships and historical behaviors," Applied Mathematics and Computation, Elsevier, vol. 437(C).
  • Handle: RePEc:eee:apmaco:v:437:y:2023:i:c:s0096300322006233
    DOI: 10.1016/j.amc.2022.127549
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322006233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127549?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Da-Cheng Nie & Zi-Ke Zhang & Jun-Lin Zhou & Yan Fu & Kui Zhang, 2014. "Information Filtering on Coupled Social Networks," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-15, July.
    2. Chen, Ling-Jiao & Gao, Jian, 2018. "A trust-based recommendation method using network diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 679-691.
    3. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    4. Li, WenYao & Xue, Xiaoyu & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Competing spreading dynamics in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    5. Liye Ma & Ramayya Krishnan & Alan L. Montgomery, 2015. "Latent Homophily or Social Influence? An Empirical Analysis of Purchase Within a Social Network," Management Science, INFORMS, vol. 61(2), pages 454-473, February.
    6. Wang, Wei & Li, Wenyao & Lin, Tao & Wu, Tao & Pan, Liming & Liu, Yanbing, 2022. "Generalized k-core percolation on higher-order dependent networks," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    7. Pech, Ratha & Hao, Dong & Lee, Yan-Li & Yuan, Ye & Zhou, Tao, 2019. "Link prediction via linear optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 528(C).
    8. Yu, Fei & Zeng, An & Gillard, Sébastien & Medo, Matúš, 2016. "Network-based recommendation algorithms: A review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 192-208.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Lei & Huang, Yichen, 2024. "Optimizing the connectedness of recommendation networks for retrieval accuracy and visiting diversity of random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ling-Jiao & Gao, Jian, 2018. "A trust-based recommendation method using network diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 679-691.
    2. Zhao, Dandan & Li, Runchao & Peng, Hao & Zhong, Ming & Wang, Wei, 2022. "Percolation on simplicial complexes," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    3. Rhys Murrian & Paul A. Raschky & Klaus Ackermann, 2024. "Friends, Key Players and the Adoption and Use of Experience Goods," Monash Economics Working Papers 2024-17, Monash University, Department of Economics.
    4. Tian, Yang & Tian, Hui & Cui, Yajuan & Zhu, Xuzhen & Cui, Qimei, 2023. "Influence of behavioral adoption preference based on heterogeneous population on multiple weighted networks," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    5. Li, Xueqi & Ghosh, Dibakar & Lei, Youming, 2023. "Chimera states in coupled pendulum with higher-order interaction," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    6. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan, 2023. "Higher-order interdependent percolation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    7. Wang, Wei & Li, Wenyao & Lin, Tao & Wu, Tao & Pan, Liming & Liu, Yanbing, 2022. "Generalized k-core percolation on higher-order dependent networks," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    8. Hou, Lei & Huang, Yichen, 2024. "Optimizing the connectedness of recommendation networks for retrieval accuracy and visiting diversity of random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    9. Nie, Yanyi & Li, Wenyao & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Markovian approach to tackle competing pathogens in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    10. Xie, Ying & Zhou, Ping & Yao, Zhao & Ma, Jun, 2022. "Response mechanism in a functional neuron under multiple stimuli," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    11. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    12. Agnieszka Rusinowska & Vassili Vergopoulos, 2020. "Ingratiation and Favoritism in Organizations," Journal of Institutional and Theoretical Economics (JITE), Mohr Siebeck, Tübingen, vol. 176(3), pages 413-445.
    13. Lukas Maier & Christian V. Baccarella & Jörn H. Block & Timm F. Wagner & Kai-Ingo Voigt, 2023. "The Legitimization Effect of Crowdfunding Success: A Consumer Perspective," Entrepreneurship Theory and Practice, , vol. 47(4), pages 1389-1420, July.
    14. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2022. "Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    15. Tuk, Mirjam A. & Verlegh, Peeter W.J. & Smidts, Ale & Wigboldus, Daniël H.J., 2019. "You and I have nothing in common: The role of dissimilarity in interpersonal influence," Organizational Behavior and Human Decision Processes, Elsevier, vol. 151(C), pages 49-60.
    16. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2023. "Pathogen diversity in meta-population networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    17. Zhang, Shujuan & Jin, Zhen & Zhang, Juan, 2016. "The dynamical modeling and simulation analysis of the recommendation on the user–movie network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 310-319.
    18. Liu, Maoxing & Ren, Xuejie & Peng, Yu & Sun, Yongzheng, 2024. "The dynamical analysis of simplicial SAIS epidemic model with awareness programs by media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 649(C).
    19. Lianren Wu & Jinjie Li & Jiayin Qi & Deli Kong & Xu Li, 2021. "The Role of Opinion Leaders in the Sustainable Development of Corporate-Led Consumer Advice Networks: Evidence from a Chinese Travel Content Community," Sustainability, MDPI, vol. 13(19), pages 1-20, October.
    20. Li, Wenyao & Cai, Meng & Zhong, Xiaoni & Liu, Yanbing & Lin, Tao & Wang, Wei, 2023. "Coevolution of epidemic and infodemic on higher-order networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:437:y:2023:i:c:s0096300322006233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.