IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v461y2016icp61-72.html
   My bibliography  Save this article

SoRS: Social recommendation using global rating reputation and local rating similarity

Author

Listed:
  • Qian, Fulan
  • Zhao, Shu
  • Tang, Jie
  • Zhang, Yanping

Abstract

Recommendation is an important and also challenging problem in online social networks. It needs to consider not only users’ personalized interests, but also social relations between users. Indeed, in practice, users are often inclined to accept recommendations from friends or opinion leaders (users with high reputations). In this paper, we present a novel recommendation framework, social recommendation using global rating reputation and local rating similarity, which combine user reputation and social similarity based on ratings. User reputation can be obtained by iteratively calculating the correlation of historical ratings of user and intrinsic qualities of items. We view the user reputation as the user’s global influence and the similarity based on rating of social relation as the user’s local influence, introduce it in the basic social recommender model. Thus users with high reputation have a strong influence on the others, and on the other hand, the effect of a user with low reputation has been weakened. The recommendation accuracy of proposed framework can be improved by effectively removing nature noise because of less rigorous user ratings and strengthening the effect of user influence with high reputation. We also improve the similarity based on ratings by avoiding the high similarity with the less common ratings between friends. We evaluate our approach on three datasets including Movielens, Epinions and Douban. Empirical results demonstrate that proposed framework achieves significant improvements on recommendation accuracy. User reputation and local similarity which are both based on ratings have a lot of helpful in improvement of prediction accuracy. The reputation also can help to improve the recommendation precision with the small training sets.

Suggested Citation

  • Qian, Fulan & Zhao, Shu & Tang, Jie & Zhang, Yanping, 2016. "SoRS: Social recommendation using global rating reputation and local rating similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 61-72.
  • Handle: RePEc:eee:phsmap:v:461:y:2016:i:c:p:61-72
    DOI: 10.1016/j.physa.2016.05.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116302102
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.05.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Da-Cheng Nie & Zi-Ke Zhang & Jun-Lin Zhou & Yan Fu & Kui Zhang, 2014. "Information Filtering on Coupled Social Networks," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-15, July.
    2. Zhang, Chu-Xu & Zhang, Zi-Ke & Yu, Lu & Liu, Chuang & Liu, Hao & Yan, Xiao-Yong, 2014. "Information filtering via collaborative user clustering modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 195-203.
    3. Tian Qiu & Zi-Ke Zhang & Guang Chen, 2013. "Information Filtering via a Scaling-Based Function," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-10, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Latha, R., 2022. "Enhancing recommendation competence in nearest neighbour models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    2. Deng, Xiuqin & Liu, Taiheng & Li, Wenzhou & Liu, Fuchun & Peng, Jiaen, 2019. "A latent factor model of fusing social regularization term and item regularization term," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1330-1342.
    3. Yu, Junliang & Gao, Min & Rong, Wenge & Li, Wentao & Xiong, Qingyu & Wen, Junhao, 2017. "Hybrid attacks on model-based social recommender systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 171-181.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Wen-Jun & Guo, Qiang & Liu, Jian-Guo, 2014. "Improved hybrid information filtering based on limited time window," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 192-197.
    2. Ma, Tinghuai & Suo, Xiafei & Zhou, Jinjuan & Tang, Meili & Guan, Donghai & Tian, Yuan & Al-Dhelaan, Abdullah & Al-Rodhaan, Mznah, 2016. "Augmenting matrix factorization technique with the combination of tags and genres," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 101-116.
    3. Zhang, Shujuan & Jin, Zhen & Zhang, Juan, 2016. "The dynamical modeling and simulation analysis of the recommendation on the user–movie network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 310-319.
    4. Nie, Da-Cheng & An, Ya-Hui & Dong, Qiang & Fu, Yan & Zhou, Tao, 2015. "Information filtering via balanced diffusion on bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 44-53.
    5. Zhang, Chu-Xu & Zhang, Zi-Ke & Yu, Lu & Liu, Chuang & Liu, Hao & Yan, Xiao-Yong, 2014. "Information filtering via collaborative user clustering modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 195-203.
    6. Lei Ji & Jian-Guo Liu & Lei Hou & Qiang Guo, 2015. "Identifying the Role of Common Interests in Online User Trust Formation," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-15, July.
    7. An, Ya-Hui & Dong, Qiang & Sun, Chong-Jing & Nie, Da-Cheng & Fu, Yan, 2016. "Diffusion-like recommendation with enhanced similarity of objects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 708-715.
    8. Ramezani, Mohsen & Yaghmaee, Farzin, 2016. "A novel video recommendation system based on efficient retrieval of human actions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 607-623.
    9. Wang, Ximeng & Liu, Yun & Xiong, Fei, 2016. "Improved personalized recommendation based on a similarity network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 271-280.
    10. Zhang, Zi-Ke & Yu, Lu & Fang, Kuan & You, Zhi-Qiang & Liu, Chuang & Liu, Hao & Yan, Xiao-Yong, 2014. "Website-oriented recommendation based on heat spreading and tag-aware collaborative filtering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 82-88.
    11. Guo, Xin-Yu & Guo, Qiang & Li, Ren-De & Liu, Jian-Guo, 2018. "Long-term memory of rating behaviors for the online trust formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 254-264.
    12. Wen, Yuan & Liu, Yun & Zhang, Zhen-Jiang & Xiong, Fei & Cao, Wei, 2014. "Compare two community-based personalized information recommendation algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 199-209.
    13. Ma, Wenping & Ren, Chen & Wu, Yue & Wang, Shanfeng & Feng, Xiang, 2017. "Personalized recommendation via unbalance full-connectivity inference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 273-279.
    14. Lee, Yan-Li & Zhou, Tao & Yang, Kexin & Du, Yajun & Pan, Liming, 2023. "Personalized recommender systems based on social relationships and historical behaviors," Applied Mathematics and Computation, Elsevier, vol. 437(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:461:y:2016:i:c:p:61-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.