IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0050948.html
   My bibliography  Save this article

Transmission Potential and Design of Adequate Control Measures for Marburg Hemorrhagic Fever

Author

Listed:
  • Marco Ajelli
  • Stefano Merler

Abstract

Marburg hemorrhagic fever is rare yet among the most severe diseases affecting humans, with case fatality ratio even higher than 80%. By analyzing the largest documented Marburg hemorrhagic fever epidemic, which occurred in Angola in 2005 and caused 329 deaths, and data on viral load over time in non-human primates, we make an assessment of transmissibility and severity of the disease. We also give insight into the control of new Marburg hemorrhagic fever epidemics to inform appropriate health responses. We estimated the distribution of the generation time to have mean 9 days (95%CI: 8.2–10 days) and standard deviation 5.4 days (95%CI: 3.9–8.6 days), and the basic reproduction number to be = 1.59 (95%CI: 1.53–1.66). Model simulations suggest that a timely isolation of cases, starting no later than 2–3 days after symptoms onset, is sufficient to contain an outbreak. Our analysis reveals that Marburg hemorrhagic fever is characterized by a relatively small reproduction number and by a relatively long generation time. Such factors, along with the extremely high severity and fatality, support the rare occurrence of large epidemics in human populations. Our results also support the effectiveness of social distancing measures - case isolation in particular - to contain or at least to mitigate an emerging outbreak. This work represents an advance in the knowledge required to manage a potential Marburg hemorrhagic fever epidemic.

Suggested Citation

  • Marco Ajelli & Stefano Merler, 2012. "Transmission Potential and Design of Adequate Control Measures for Marburg Hemorrhagic Fever," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-8, December.
  • Handle: RePEc:plo:pone00:0050948
    DOI: 10.1371/journal.pone.0050948
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0050948
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0050948&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0050948?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    2. Marta Luisa Ciofi degli Atti & Stefano Merler & Caterina Rizzo & Marco Ajelli & Marco Massari & Piero Manfredi & Cesare Furlanello & Gianpaolo Scalia Tomba & Mimmo Iannelli, 2008. "Mitigation Measures for Pandemic Influenza in Italy: An Individual Based Model Considering Different Scenarios," PLOS ONE, Public Library of Science, vol. 3(3), pages 1-11, March.
    3. Neil M. Ferguson & Derek A.T. Cummings & Simon Cauchemez & Christophe Fraser & Steven Riley & Aronrag Meeyai & Sopon Iamsirithaworn & Donald S. Burke, 2005. "Strategies for containing an emerging influenza pandemic in Southeast Asia," Nature, Nature, vol. 437(7056), pages 209-214, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Merler & Marco Ajelli & Andrea Pugliese & Neil M Ferguson, 2011. "Determinants of the Spatiotemporal Dynamics of the 2009 H1N1 Pandemic in Europe: Implications for Real-Time Modelling," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-13, September.
    2. Fabrizio Iozzi & Francesco Trusiano & Matteo Chinazzi & Francesco C Billari & Emilio Zagheni & Stefano Merler & Marco Ajelli & Emanuele Del Fava & Piero Manfredi, 2010. "Little Italy: An Agent-Based Approach to the Estimation of Contact Patterns- Fitting Predicted Matrices to Serological Data," PLOS Computational Biology, Public Library of Science, vol. 6(12), pages 1-10, December.
    3. Joel K Kelso & Nilimesh Halder & George J Milne, 2010. "The Impact of Case Diagnosis Coverage and Diagnosis Delays on the Effectiveness of Antiviral Strategies in Mitigating Pandemic Influenza A/H1N1 2009," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-13, November.
    4. Jeremy Hadidjojo & Siew Ann Cheong, 2011. "Equal Graph Partitioning on Estimated Infection Network as an Effective Epidemic Mitigation Measure," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-10, July.
    5. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    6. James Truscott & Neil M Ferguson, 2012. "Evaluating the Adequacy of Gravity Models as a Description of Human Mobility for Epidemic Modelling," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
    7. Eva K. Lee & Chien-Hung Chen & Ferdinand Pietz & Bernard Benecke, 2009. "Modeling and Optimizing the Public-Health Infrastructure for Emergency Response," Interfaces, INFORMS, vol. 39(5), pages 476-490, October.
    8. Marco Ajelli & Stefano Merler, 2008. "The Impact of the Unstructured Contacts Component in Influenza Pandemic Modeling," PLOS ONE, Public Library of Science, vol. 3(1), pages 1-10, January.
    9. Eva K. Lee & Ferdinand Pietz & Bernard Benecke & Jacquelyn Mason & Greg Burel, 2013. "Advancing Public Health and Medical Preparedness with Operations Research," Interfaces, INFORMS, vol. 43(1), pages 79-98, February.
    10. Akira Watanabe & Hiroyuki Matsuda, 2023. "Effectiveness of feedback control and the trade-off between death by COVID-19 and costs of countermeasures," Health Care Management Science, Springer, vol. 26(1), pages 46-61, March.
    11. Andy Hong & Sandip Chakrabarti, 2023. "Compact living or policy inaction? Effects of urban density and lockdown on the COVID-19 outbreak in the US," Urban Studies, Urban Studies Journal Limited, vol. 60(9), pages 1588-1609, July.
    12. Rakowski, Franciszek & Gruziel, Magdalena & Bieniasz-Krzywiec, Łukasz & Radomski, Jan P., 2010. "Influenza epidemic spread simulation for Poland — a large scale, individual based model study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3149-3165.
    13. van der Weijden, Charlie P. & Stein, Mart L. & Jacobi, André J. & Kretzschmar, Mirjam E.E. & Reintjes, Ralf & van Steenbergen, Jim E. & Timen, Aura, 2013. "Choosing pandemic parameters for pandemic preparedness planning: A comparison of pandemic scenarios prior to and following the influenza A(H1N1) 2009 pandemic," Health Policy, Elsevier, vol. 109(1), pages 52-62.
    14. Lawrence M. Wein & Michael P. Atkinson, 2009. "Assessing Infection Control Measures for Pandemic Influenza," Risk Analysis, John Wiley & Sons, vol. 29(7), pages 949-962, July.
    15. Savachkin, Alex & Uribe, Andrés, 2012. "Dynamic redistribution of mitigation resources during influenza pandemics," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 33-45.
    16. T Déirdre Hollingsworth & Don Klinkenberg & Hans Heesterbeek & Roy M Anderson, 2011. "Mitigation Strategies for Pandemic Influenza A: Balancing Conflicting Policy Objectives," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-11, February.
    17. Dionne M. Aleman & Theodorus G. Wibisono & Brian Schwartz, 2011. "A Nonhomogeneous Agent-Based Simulation Approach to Modeling the Spread of Disease in a Pandemic Outbreak," Interfaces, INFORMS, vol. 41(3), pages 301-315, June.
    18. Jeffrey Shaman & Virginia E Pitzer & Cécile Viboud & Bryan T Grenfell & Marc Lipsitch, 2010. "Absolute Humidity and the Seasonal Onset of Influenza in the Continental United States," PLOS Biology, Public Library of Science, vol. 8(2), pages 1-13, February.
    19. Warren Jochem & Kelly Sims & Edward Bright & Marie Urban & Amy Rose & Phillip Coleman & Budhendra Bhaduri, 2013. "Estimating traveler populations at airport and cruise terminals for population distribution and dynamics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1325-1342, September.
    20. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0050948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.