IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v348y2005icp659-682.html
   My bibliography  Save this article

A bridge between liquids and socio-economic systems: the key role of interaction strengths

Author

Listed:
  • Roehner, Bertrand M.

Abstract

One distinctive and pervasive aspect of social systems is the fact that they involve several kinds of agents. Thus, in order to draw parallels with physical systems one is led to consider binary (or multi-component) compounds. Recent views about the mixing of liquids in solutions gained from neutron and X-ray scattering show these systems to have a number of similarities with socio-economic systems. It appears that such phenomena as rearrangement of bonds in a solution, gas condensation, and selective evaporation of molecules can be transposed in a natural way to some socio-economic phenomena. These connections provide with a novel perspective for looking at social systems which we illustrate through examples. For instance, we interpret suicide as an escape phenomenon and in order to test this interpretation we consider social systems characterized by very low levels of social interaction. For these systems suicide rates are found to be 10 to 100 times higher than in the general population. Another interesting parallel concerns the phase transition that occurs when locusts gather together to form swarms which may contain several billion insects. What hinders the thorough investigation of such cases from the standpoint of collective phenomena that we advocate is the lack or inadequacy of statistical data; up to now socio-economic data were collected for completely different purposes. Most essential, for further progress, are the statistics which would permit to estimate the strength of social ties and interactions. Once adequate data become available, rapid advancement may be expected. At the end of the paper, we will discuss whether or not the ergodic principle applies to social systems.

Suggested Citation

  • Roehner, Bertrand M., 2005. "A bridge between liquids and socio-economic systems: the key role of interaction strengths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 659-682.
  • Handle: RePEc:eee:phsmap:v:348:y:2005:i:c:p:659-682
    DOI: 10.1016/j.physa.2004.09.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104012622
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.09.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Osamu Mishima & H. Eugene Stanley, 1998. "The relationship between liquid, supercooled and glassy water," Nature, Nature, vol. 396(6709), pages 329-335, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richmond, Peter & Roehner, Bertrand M., 2016. "Effect of marital status on death rates. Part 2: Transient mortality spikes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 768-784.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gautam, Arvind K. & Chandra, Avinash, 2020. "A computational study of excess properties for mW potential model of water in supercooled region," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    2. Zhao Fan & Hajime Tanaka, 2024. "Microscopic mechanisms of pressure-induced amorphous-amorphous transitions and crystallisation in silicon," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Stanley, H.Eugene & Andrade, José S. & Havlin, Shlomo & Makse, Hernán A. & Suki, Béla, 1999. "Percolation phenomena: a broad-brush introduction with some recent applications to porous media, liquid water, and city growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 266(1), pages 5-16.
    4. Charles M. Pépin & Ramesh André & Florent Occelli & Florian Dembele & Aldo Mozzanica & Viktoria Hinger & Matteo Levantino & Paul Loubeyre, 2024. "Metastable water at several compression rates and its freezing kinetics into ice VII," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Stanley, H.E. & Kumar, P. & Xu, L. & Yan, Z. & Mazza, M.G. & Buldyrev, S.V. & Chen, S.-H. & Mallamace, F., 2007. "The puzzling unsolved mysteries of liquid water: Some recent progress," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(2), pages 729-743.
    6. Kiselev, S.B. & Ely, J.F., 2001. "Curvature effect on the physical boundary of metastable states in liquids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(3), pages 357-370.
    7. Sharon Berkowicz & Iason Andronis & Anita Girelli & Mariia Filianina & Maddalena Bin & Kyeongmin Nam & Myeongsik Shin & Markus Kowalewski & Tetsuo Katayama & Nicolas Giovambattista & Kyung Hwan Kim & , 2024. "Supercritical density fluctuations and structural heterogeneity in supercooled water-glycerol microdroplets," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Robert F. Tournier & Michael I. Ojovan, 2022. "Multiple Melting Temperatures in Glass-Forming Melts," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    9. Katrin Amann-Winkel & Kyung Hwan Kim & Nicolas Giovambattista & Marjorie Ladd-Parada & Alexander Späh & Fivos Perakis & Harshad Pathak & Cheolhee Yang & Tobias Eklund & Thomas J. Lane & Seonju You & S, 2023. "Liquid-liquid phase separation in supercooled water from ultrafast heating of low-density amorphous ice," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Wiggins, Philippa M, 2002. "Water in complex environments such as living systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 485-491.
    11. Stanley, H.Eugene & Buldyrev, Sergey V. & Giovambattista, Nicolas, 2004. "Static heterogeneities in liquid water," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(1), pages 40-47.
    12. Stanley, H.E. & Buldyrev, S.V. & Franzese, G. & Havlin, S. & Mallamace, F. & Kumar, P. & Plerou, V. & Preis, T., 2010. "Correlated randomness and switching phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(15), pages 2880-2893.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:348:y:2005:i:c:p:659-682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.