IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i7p1432-1439.html
   My bibliography  Save this article

Comparison of hyperbolic and constant width simultaneous confidence bands in multiple linear regression under MVCS criterion

Author

Listed:
  • Liu, W.
  • Hayter, A.J.
  • Piegorsch, W.W.
  • Ah-Kine, P.

Abstract

A simultaneous confidence band provides useful information on the plausible range of the unknown regression model, and different confidence bands can often be constructed for the same regression model. For a simple regression line, Liu and Hayter [W. Liu, A.J. Hayter, Minimum area confidence set optimality for confidence bands in simple linear regression, J. Amer. Statist. Assoc. 102 (477) (2007) pp. 181-190] proposed the use of the area of the confidence set corresponding to a confidence band as an optimality criterion in comparison of confidence bands; the smaller the area of the confidence set, the better the corresponding confidence band. This minimum area confidence set (MACS) criterion can be generalized to a minimum volume confidence set (MVCS) criterion in the study of confidence bands for a multiple linear regression model. In this paper hyperbolic and constant width confidence bands for a multiple linear regression model over a particular ellipsoidal region of the predictor variables are compared under the MVCS criterion. It is observed that whether one band is better than the other depends on the magnitude of one particular angle that determines the size of the predictor variable region. When the angle and hence the size of the predictor variable region is small, the constant width band is better than the hyperbolic band but only marginally. When the angle and hence the size of the predictor variable region is large the hyperbolic band can be substantially better than the constant width band.

Suggested Citation

  • Liu, W. & Hayter, A.J. & Piegorsch, W.W. & Ah-Kine, P., 2009. "Comparison of hyperbolic and constant width simultaneous confidence bands in multiple linear regression under MVCS criterion," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1432-1439, August.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:7:p:1432-1439
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00268-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu W. & Jamshidian M. & Zhang Y., 2004. "Multiple Comparison of Several Linear Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 395-403, January.
    2. Wei Liu & Shan Lin & Walter W. Piegorsch, 2008. "Construction of Exact Simultaneous Confidence Bands for a Simple Linear Regression Model," International Statistical Review, International Statistical Institute, vol. 76(1), pages 39-57, April.
    3. Liu, W. & Hayter, A.J., 2007. "Minimum Area Confidence Set Optimality for Confidence Bands in Simple Linear Regression," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 181-190, March.
    4. Obaid M. Al-Saidy & Walter W. Piegorsch & R. Webster West & Daniela K. Nitcheva, 2003. "Confidence Bands for Low-Dose Risk Estimation with Quantal Response Data," Biometrics, The International Biometric Society, vol. 59(4), pages 1056-1062, December.
    5. Walter W. Piegorsch & R. Webster West & Wei Pan & Ralph L. Kodell, 2005. "Low dose risk estimation via simultaneous statistical inferences," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 245-258, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Withers & Saralees Nadarajah, 2012. "Maximum modulus confidence bands," Statistical Papers, Springer, vol. 53(4), pages 811-819, November.
    2. Freyberger, Joachim & Rai, Yoshiyasu, 2018. "Uniform confidence bands: Characterization and optimality," Journal of Econometrics, Elsevier, vol. 204(1), pages 119-130.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher Withers & Saralees Nadarajah, 2012. "Maximum modulus confidence bands," Statistical Papers, Springer, vol. 53(4), pages 811-819, November.
    2. Sanyu Zhou & Defa Wang & Jingjing Zhu, 2020. "Construction of simultaneous confidence bands for a percentile hyper-plane with predictor variables constrained in an ellipsoidal region," Statistical Papers, Springer, vol. 61(3), pages 1335-1346, June.
    3. Jamshidian, Mortaza & Liu, Wei & Bretz, Frank, 2010. "Simultaneous confidence bands for all contrasts of three or more simple linear regression models over an interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1475-1483, June.
    4. Sanyu Zhou, 2017. "One-sided hyperbolic simultaneous confidence bands for multiple and polynomial regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(2), pages 187-200, February.
    5. Walter W. Piegorsch, 2010. "Translational benchmark risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 13(5), pages 653-667, July.
    6. Lu, Xiaolei & Kuriki, Satoshi, 2017. "Simultaneous confidence bands for contrasts between several nonlinear regression curves," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 83-104.
    7. W. Liu & F. Bretz & A. J. Hayter & H. P. Wynn, 2009. "Assessing Nonsuperiority, Noninferiority, or Equivalence When Comparing Two Regression Models Over a Restricted Covariate Region," Biometrics, The International Biometric Society, vol. 65(4), pages 1279-1287, December.
    8. Chang-Yu Liu & Xin Liu & Rong-Xian Yue, 2024. "Locally optimal designs for comparing curves in generalized linear models," Statistical Papers, Springer, vol. 65(5), pages 3181-3201, July.
    9. Jin Zhang, 2017. "Minimum volume confidence sets for parameters of normal distributions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(3), pages 309-320, July.
    10. Su, Haiyan & Liang, Hua, 2010. "An empirical likelihood-based method for comparison of treatment effects--Test of equality of coefficients in linear models," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1079-1088, April.
    11. Freyberger, Joachim & Rai, Yoshiyasu, 2018. "Uniform confidence bands: Characterization and optimality," Journal of Econometrics, Elsevier, vol. 204(1), pages 119-130.
    12. Francq, Bernard G. & Govaerts, Bernadette, 2012. "Hyperbolic confidence bands of errors-in-variables regression lines applied to method comparison studies," LIDAM Discussion Papers ISBA 2012039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Walter W. Piegorsch & R. Webster West, 2005. "Benchmark Analysis: Shopping with Proper Confidence," Risk Analysis, John Wiley & Sons, vol. 25(4), pages 913-920, August.
    14. Dette, Holger & Pepelyshev, Andrey & Wong, Weng Kee, 2008. "Optimal designs for dose finding experiments in toxicity studies," Technical Reports 2008,09, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    15. Daniela K. Nitcheva & Walter W. Piegorsch & R. Webster West & Ralph L. Kodell, 2005. "Multiplicity-Adjusted Inferences in Risk Assessment: Benchmark Analysis with Quantal Response Data," Biometrics, The International Biometric Society, vol. 61(1), pages 277-286, March.
    16. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    17. Jamshidian, Mortaza & Jennrich, Robert I. & Liu, Wei, 2007. "A study of partial F tests for multiple linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6269-6284, August.
    18. Sanyu Zhou, 2018. "An exact method for the multiple comparison of several polynomial regression models with applications in dose-response study," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 413-429, July.
    19. Frank Schaarschmidt, 2017. "Multiple treatment comparisons in analysis of covariance with interaction," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 609-628, November.
    20. Gupta, Ramesh C. & Wang, Na, 2009. "Estimation of extra risk and benchmark dose in dose–response models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2036-2050.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:7:p:1432-1439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.