IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v61y2020i3d10.1007_s00362-018-0990-4.html
   My bibliography  Save this article

Construction of simultaneous confidence bands for a percentile hyper-plane with predictor variables constrained in an ellipsoidal region

Author

Listed:
  • Sanyu Zhou

    (Shanghai University of Finance and Economics)

  • Defa Wang

    (Shanghai University of Finance and Economics)

  • Jingjing Zhu

    (Shanghai University of Finance and Economics)

Abstract

This paper provides the method of constructing the simultaneous confidence band for a percentile hyper-plane with predictor variables constrained in an ellipsoidal region. The band is compared with that on a rectangular region. It is shown that the band on the ellipsoidal region has a big advantage. The proposed method allows to construct the Type I band and the Type II band, and also allows to constrain the predictor variables either in finite intervals or in infinite intervals. In order to evaluate the efficiency of the band, the average width criterion is introduced, under which the Type I band and the Type II band are compared. All stated above are illustrated by a real example of a leaching rate study.

Suggested Citation

  • Sanyu Zhou & Defa Wang & Jingjing Zhu, 2020. "Construction of simultaneous confidence bands for a percentile hyper-plane with predictor variables constrained in an ellipsoidal region," Statistical Papers, Springer, vol. 61(3), pages 1335-1346, June.
  • Handle: RePEc:spr:stpapr:v:61:y:2020:i:3:d:10.1007_s00362-018-0990-4
    DOI: 10.1007/s00362-018-0990-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-018-0990-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-018-0990-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mariano Amo-Salas & Elvira Delgado-Márquez & Lenka Filová & Jesús López-Fidalgo, 2016. "Optimal designs for model discrimination and fitting for the flow of particles," Statistical Papers, Springer, vol. 57(4), pages 875-891, December.
    2. W. Liu & F. Bretz & A. J. Hayter & H. P. Wynn, 2009. "Assessing Nonsuperiority, Noninferiority, or Equivalence When Comparing Two Regression Models Over a Restricted Covariate Region," Biometrics, The International Biometric Society, vol. 65(4), pages 1279-1287, December.
    3. Sanyu Zhou, 2017. "One-sided hyperbolic simultaneous confidence bands for multiple and polynomial regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(2), pages 187-200, February.
    4. Liu W. & Jamshidian M. & Zhang Y., 2004. "Multiple Comparison of Several Linear Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 395-403, January.
    5. Walter W. Piegorsch & R. Webster West & Wei Pan & Ralph L. Kodell, 2005. "Low dose risk estimation via simultaneous statistical inferences," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 245-258, January.
    6. Liu, W. & Hayter, A.J., 2007. "Minimum Area Confidence Set Optimality for Confidence Bands in Simple Linear Regression," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 181-190, March.
    7. Xiaojian Xu & Xiaoli Shang, 2017. "D-optimal designs for full and reduced Fourier regression models," Statistical Papers, Springer, vol. 58(3), pages 811-829, September.
    8. Obaid M. Al-Saidy & Walter W. Piegorsch & R. Webster West & Daniela K. Nitcheva, 2003. "Confidence Bands for Low-Dose Risk Estimation with Quantal Response Data," Biometrics, The International Biometric Society, vol. 59(4), pages 1056-1062, December.
    9. W. Liu & J.C. Hsu & F. Bretz & A.J. Hayter & Y. Han, 2014. "Shelf-life and its estimation in drug stability studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(9), pages 1989-2000, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Cai & Suojin Wang, 2021. "Global statistical inference for the difference between two regression mean curves with covariates possibly partially missing," Statistical Papers, Springer, vol. 62(6), pages 2573-2602, December.
    2. Majid Mojirsheibani, 2022. "On the maximal deviation of kernel regression estimators with NMAR response variables," Statistical Papers, Springer, vol. 63(5), pages 1677-1705, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher Withers & Saralees Nadarajah, 2012. "Maximum modulus confidence bands," Statistical Papers, Springer, vol. 53(4), pages 811-819, November.
    2. Liu, W. & Hayter, A.J. & Piegorsch, W.W. & Ah-Kine, P., 2009. "Comparison of hyperbolic and constant width simultaneous confidence bands in multiple linear regression under MVCS criterion," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1432-1439, August.
    3. Sanyu Zhou, 2017. "One-sided hyperbolic simultaneous confidence bands for multiple and polynomial regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(2), pages 187-200, February.
    4. Jamshidian, Mortaza & Liu, Wei & Bretz, Frank, 2010. "Simultaneous confidence bands for all contrasts of three or more simple linear regression models over an interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1475-1483, June.
    5. Sanyu Zhou, 2018. "An exact method for the multiple comparison of several polynomial regression models with applications in dose-response study," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 413-429, July.
    6. Chang-Yu Liu & Xin Liu & Rong-Xian Yue, 2024. "Locally optimal designs for comparing curves in generalized linear models," Statistical Papers, Springer, vol. 65(5), pages 3181-3201, July.
    7. Walter W. Piegorsch, 2010. "Translational benchmark risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 13(5), pages 653-667, July.
    8. W. Liu & F. Bretz & A. J. Hayter & H. P. Wynn, 2009. "Assessing Nonsuperiority, Noninferiority, or Equivalence When Comparing Two Regression Models Over a Restricted Covariate Region," Biometrics, The International Biometric Society, vol. 65(4), pages 1279-1287, December.
    9. Kato, Naohiro & Kuriki, Satoshi, 2013. "Likelihood ratio tests for positivity in polynomial regressions," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 334-346.
    10. Kathrin Möllenhoff & Achim Tresch, 2023. "Investigating non-inferiority or equivalence in time-to-event data under non-proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 483-507, July.
    11. Su, Haiyan & Liang, Hua, 2010. "An empirical likelihood-based method for comparison of treatment effects--Test of equality of coefficients in linear models," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1079-1088, April.
    12. Dette, Holger & Schorning, Kirsten & Konstantinou, Maria, 2017. "Optimal designs for comparing regression models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 273-286.
    13. Freyberger, Joachim & Rai, Yoshiyasu, 2018. "Uniform confidence bands: Characterization and optimality," Journal of Econometrics, Elsevier, vol. 204(1), pages 119-130.
    14. Víctor Casero-Alonso & Andrey Pepelyshev & Weng K. Wong, 2018. "A web-based tool for designing experimental studies to detect hormesis and estimate the threshold dose," Statistical Papers, Springer, vol. 59(4), pages 1307-1324, December.
    15. Dette, Holger & Pepelyshev, Andrey & Wong, Weng Kee, 2008. "Optimal designs for dose finding experiments in toxicity studies," Technical Reports 2008,09, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    16. Daniela K. Nitcheva & Walter W. Piegorsch & R. Webster West & Ralph L. Kodell, 2005. "Multiplicity-Adjusted Inferences in Risk Assessment: Benchmark Analysis with Quantal Response Data," Biometrics, The International Biometric Society, vol. 61(1), pages 277-286, March.
    17. Frank Schaarschmidt, 2017. "Multiple treatment comparisons in analysis of covariance with interaction," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 609-628, November.
    18. Sophia Rosen & Ori Davidov, 2017. "Ordered Regressions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 817-842, December.
    19. Jamshidian, Mortaza & Liu, Wei & Zhang, Ying & Jamishidian, Farid, 2005. "Simreg: a Software Including Some New Developments in Multiple Comparison and Simultaneous Confidence Bands for Linear Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i02).
    20. Mitchell J. Small, 2008. "Methods for Assessing Uncertainty in Fundamental Assumptions and Associated Models for Cancer Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 28(5), pages 1289-1308, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:61:y:2020:i:3:d:10.1007_s00362-018-0990-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.