IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v208y2023icp95-135.html
   My bibliography  Save this article

Orchard Algorithm (OA): A new meta-heuristic algorithm for solving discrete and continuous optimization problems

Author

Listed:
  • Kaveh, Mehrdad
  • Mesgari, Mohammad Saadi
  • Saeidian, Bahram

Abstract

Meta-heuristic algorithms have been widely used to solve different optimization problems. There have always been ongoing efforts to develop new and efficient algorithms. In this paper, the Orchard Algorithm (OA) is designed and introduced, inspired by fruit gardening. In this process, various actions such as irrigation, fertilization, trimming, and grafting lead to a fruit orchard where most trees grow and produce fruit adequately. In OA, both explorations of the search space and exploitation of the best solutions are achieved using personal and social behavior. By introducing various operators such as annual growth, screening, and grafting, the algorithm can efficiently search and explore the search space. The performance of the proposed OA algorithm was evaluated on CEC2005, IEEE CEC06 2019,test functions, and five real-world engineering problems compared with 13 widely used and competitive algorithms. Thirty benchmark functions were used to compare the capabilities of the OA algorithm with other research. The OA yields far better results in many aspects than the other algorithms. The results show the OA’s superiority and this algorithm’s capability in solving optimization problems.

Suggested Citation

  • Kaveh, Mehrdad & Mesgari, Mohammad Saadi & Saeidian, Bahram, 2023. "Orchard Algorithm (OA): A new meta-heuristic algorithm for solving discrete and continuous optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 95-135.
  • Handle: RePEc:eee:matcom:v:208:y:2023:i:c:p:95-135
    DOI: 10.1016/j.matcom.2022.12.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422005146
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.12.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sivashan Chetty & Aderemi Adewumi, 2013. "Three new stochastic local search algorithms for continuous optimization problems," Computational Optimization and Applications, Springer, vol. 56(3), pages 675-721, December.
    2. Rubinstein, Reuven Y., 1997. "Optimization of computer simulation models with rare events," European Journal of Operational Research, Elsevier, vol. 99(1), pages 89-112, May.
    3. Omid Haddad & Abbas Afshar & Miguel Mariño, 2006. "Honey-Bees Mating Optimization (HBMO) Algorithm: A New Heuristic Approach for Water Resources Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(5), pages 661-680, October.
    4. Hashim, Fatma A. & Houssein, Essam H. & Hussain, Kashif & Mabrouk, Mai S. & Al-Atabany, Walid, 2022. "Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 84-110.
    5. Eslami, N. & Yazdani, S. & Mirzaei, M. & Hadavandi, E., 2022. "Aphid–Ant Mutualism: A novel nature-inspired​ metaheuristic algorithm for solving optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 362-395.
    6. Nibaldo Rodríguez & Abhishek Gupta & Paula L. Zabala & Guillermo Cabrera-Guerrero, 2018. "Optimization Algorithms Combining (Meta)heuristics and Mathematical Programming and Its Application in Engineering," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-3, September.
    7. Roberto Battiti & Mauro Brunato & Andrea Mariello, 2019. "Reactive Search Optimization: Learning While Optimizing," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, edition 3, chapter 0, pages 479-511, Springer.
    8. Pan, Jeng-Shyang & Zhang, Li-Gang & Wang, Ruo-Bin & Snášel, Václav & Chu, Shu-Chuan, 2022. "Gannet optimization algorithm : A new metaheuristic algorithm for solving engineering optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 343-373.
    9. Alimoradi, Mahmoud & Azgomi, Hossein & Asghari, Ali, 2022. "Trees Social Relations Optimization Algorithm: A new Swarm-Based metaheuristic technique to solve continuous and discrete optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 629-664.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nour Elhouda Chalabi & Abdelouahab Attia & Abderraouf Bouziane & Mahmoud Hassaballah & Abed Alanazi & Adel Binbusayyis, 2023. "An Archive-Guided Equilibrium Optimizer Based on Epsilon Dominance for Multi-Objective Optimization Problems," Mathematics, MDPI, vol. 11(12), pages 1-30, June.
    2. Lei Chen & Yikai Zhao & Yunpeng Ma & Bingjie Zhao & Changzhou Feng, 2023. "Improving Wild Horse Optimizer: Integrating Multistrategy for Robust Performance across Multiple Engineering Problems and Evaluation Benchmarks," Mathematics, MDPI, vol. 11(18), pages 1-35, September.
    3. Yasser Ebrahimian Ghajari & Mehrdad Kaveh & Diego Martín, 2023. "Predicting PM10 Concentrations Using Evolutionary Deep Neural Network and Satellite-Derived Aerosol Optical Depth," Mathematics, MDPI, vol. 11(19), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Abdel-Basset & Reda Mohamed & Karam M. Sallam & Ripon K. Chakrabortty, 2022. "Light Spectrum Optimizer: A Novel Physics-Inspired Metaheuristic Optimization Algorithm," Mathematics, MDPI, vol. 10(19), pages 1-63, September.
    2. Mohammad Hassan Salmani & Kourosh Eshghi, 2017. "A Metaheuristic Algorithm Based on Chemotherapy Science: CSA," Journal of Optimization, Hindawi, vol. 2017, pages 1-13, February.
    3. Kutlu Onay, Funda, 2023. "A novel improved chef-based optimization algorithm with Gaussian random walk-based diffusion process for global optimization and engineering problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 195-223.
    4. Ashraf K. Abdelaal & Elshahat F. Mohamed & Attia A. El-Fergany, 2022. "Optimal Scheduling of Hybrid Sustainable Energy Microgrid: A Case Study for a Resort in Sokhna, Egypt," Sustainability, MDPI, vol. 14(19), pages 1-13, October.
    5. Essam H. Houssein & Awny Sayed, 2023. "Dynamic Candidate Solution Boosted Beluga Whale Optimization Algorithm for Biomedical Classification," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
    6. Zhang, Ziyuan & Wang, Jianzhou & Wei, Danxiang & Luo, Tianrui & Xia, Yurui, 2023. "A novel ensemble system for short-term wind speed forecasting based on Two-stage Attention-Based Recurrent Neural Network," Renewable Energy, Elsevier, vol. 204(C), pages 11-23.
    7. Jian Zhao & Bochen Zhang & Xiwang Guo & Liang Qi & Zhiwu Li, 2022. "Self-Adapting Spherical Search Algorithm with Differential Evolution for Global Optimization," Mathematics, MDPI, vol. 10(23), pages 1-31, November.
    8. Mattrand, C. & Bourinet, J.-M., 2014. "The cross-entropy method for reliability assessment of cracked structures subjected to random Markovian loads," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 171-182.
    9. Hegazy Rezk & A. G. Olabi & Mohammad Ali Abdelkareem & Abdul Hai Alami & Enas Taha Sayed, 2023. "Optimal Parameter Determination of Membrane Bioreactor to Boost Biohydrogen Production-Based Integration of ANFIS Modeling and Honey Badger Algorithm," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
    10. Kin-Ping Hui, 2011. "Cooperative Cross-Entropy method for generating entangled networks," Annals of Operations Research, Springer, vol. 189(1), pages 205-214, September.
    11. Mathieu Balesdent & Jérôme Morio & Loïc Brevault, 2016. "Rare Event Probability Estimation in the Presence of Epistemic Uncertainty on Input Probability Distribution Parameters," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 197-216, March.
    12. Fatmah Y. Assiri & Mahmoud Ragab, 2023. "Optimal Deep-Learning-Based Cyberattack Detection in a Blockchain-Assisted IoT Environment," Mathematics, MDPI, vol. 11(19), pages 1-16, September.
    13. Eslami, N. & Yazdani, S. & Mirzaei, M. & Hadavandi, E., 2022. "Aphid–Ant Mutualism: A novel nature-inspired​ metaheuristic algorithm for solving optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 362-395.
    14. K.-P. Hui & N. Bean & M. Kraetzl & Dirk Kroese, 2005. "The Cross-Entropy Method for Network Reliability Estimation," Annals of Operations Research, Springer, vol. 134(1), pages 101-118, February.
    15. Patelli, Edoardo & Feng, Geng & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2017. "Simulation methods for system reliability using the survival signature," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 327-337.
    16. Mahamed G. H. Omran & Maurice Clerc & Fatme Ghaddar & Ahmad Aldabagh & Omar Tawfik, 2022. "Permutation Tests for Metaheuristic Algorithms," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    17. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Martin Calasan & Mihailo Micev & Ziad M. Ali & Saad Mekhilef & Hussain Bassi & Hatem Sindi & Shady H. E. Abdel Aleem, 2022. "Estimation of Parameters of Different Equivalent Circuit Models of Solar Cells and Various Photovoltaic Modules Using Hybrid Variants of Honey Badger Algorithm and Artificial Gorilla Troops Optimizer," Mathematics, MDPI, vol. 10(7), pages 1-31, March.
    18. Arya Yaghoubzadeh-Bavandpour & Omid Bozorg-Haddad & Mohammadreza Rajabi & Babak Zolghadr-Asli & Xuefeng Chu, 2022. "Application of Swarm Intelligence and Evolutionary Computation Algorithms for Optimal Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2275-2292, May.
    19. Saranya, K. & Prasanna, P. Krishna, 2018. "Estimating stochastic volatility with jumps and asymmetry in Asian markets," Finance Research Letters, Elsevier, vol. 25(C), pages 145-153.
    20. Muhammad Haris Khan & Abasin Ulasyar & Abraiz Khattak & Haris Sheh Zad & Mohammad Alsharef & Ahmad Aziz Alahmadi & Nasim Ullah, 2022. "Optimal Sizing and Allocation of Distributed Generation in the Radial Power Distribution System Using Honey Badger Algorithm," Energies, MDPI, vol. 15(16), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:208:y:2023:i:c:p:95-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.