IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v20y2006i5p661-680.html
   My bibliography  Save this article

Honey-Bees Mating Optimization (HBMO) Algorithm: A New Heuristic Approach for Water Resources Optimization

Author

Listed:
  • Omid Haddad
  • Abbas Afshar
  • Miguel Mariño

Abstract

Over the last decade, evolutionary and meta-heuristic algorithms have been extensively used as search and optimization tools in various problem domains, including science, commerce, and engineering. Their broad applicability, ease of use, and global perspective may be considered as the primary reason for their success. The honey-bees mating process may also be considered as a typical swarm-based approach to optimization, in which the search algorithm is inspired by the process of real honey-bees mating. In this paper, the honey-bees mating optimization algorithm (HBMO) is presented and tested with few benchmark examples consisting of highly non-linear constrained and/or unconstrained real-valued mathematical models. The performance of the algorithm is quite comparable with the results of the well-developed genetic algorithm. The HBMO algorithm is also applied to the operation of a single reservoir with 60 periods with the objective of minimizing the total square deviation from target demands. Results obtained are promising and compare well with the results of other well-known heuristic approaches. Copyright Springer Science+Business Media, Inc. 2006

Suggested Citation

  • Omid Haddad & Abbas Afshar & Miguel Mariño, 2006. "Honey-Bees Mating Optimization (HBMO) Algorithm: A New Heuristic Approach for Water Resources Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(5), pages 661-680, October.
  • Handle: RePEc:spr:waterr:v:20:y:2006:i:5:p:661-680
    DOI: 10.1007/s11269-005-9001-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-005-9001-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-005-9001-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:20:y:2006:i:5:p:661-680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.