IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i5p1077-d1075832.html
   My bibliography  Save this article

A Gradient-Based Optimizer with a Crossover Operator for Distribution Static VAR Compensator (D-SVC) Sizing and Placement in Electrical Systems

Author

Listed:
  • Ghareeb Moustafa

    (Electrical Engineering Department, Jazan University, Jazan 45142, Saudi Arabia
    Electrical Engineering Department, Suez Canal University, Ismailia 41522, Egypt)

  • Mostafa Elshahed

    (Electrical Engineering Department, Engineering and Information Technology College, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
    Electrical Power Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt)

  • Ahmed R. Ginidi

    (Department of Electrical Power Engineering, Faculty of Engineering, Suez University, Suez 43533, Egypt)

  • Abdullah M. Shaheen

    (Department of Electrical Power Engineering, Faculty of Engineering, Suez University, Suez 43533, Egypt)

  • Hany S. E. Mansour

    (Electrical Engineering Department, Suez Canal University, Ismailia 41522, Egypt)

Abstract

A gradient-based optimizer (GBO) is a recently inspired meta-heuristic technique centered on Newton’s gradient-based approach. In this paper, an advanced developed version of the GBO is merged with a crossover operator (GBOC) to enhance the diversity of the created solutions. The merged crossover operator causes the solutions in the next generation to be more random. The proposed GBOC maintains the original Gradient Search Rule (GSR) and Local Escaping Operator (LEO). The GSR directs the search to potential areas and aids in its convergence to the optimal answer, while the LEO aids the searching process in avoiding local optima. The proposed GBOC technique is employed to optimally place and size the distribution static VAR compensator (D-SVC), one of the distribution flexible AC transmission devices (D-FACTS). It is developed to maximize the yearly energy savings via power losses concerning simultaneously different levels of the peak, average, and light loadings. Its relevance is tested on three distribution systems of IEEE 33, 69, and 118 nodes. Based on the proposed GBOC, the outputs of the D-SVCs are optimally varying with the loading level. Furthermore, their installed ratings are handled as an additional constraint relating to two compensation levels of 50% and 75% of the total reactive power load to reflect a financial installation limit. The simulation applications of the proposed GBOC declare great economic savings in yearly energy losses for the three distribution systems with increasing compensation levels and iterations compared to the initial case. In addition, the effectiveness of the proposed GBOC is demonstrated compared to several techniques, such as the original GBO, the salp swarm algorithm, the dwarf mongoose algorithm, differential evolution, and honey badger optimization.

Suggested Citation

  • Ghareeb Moustafa & Mostafa Elshahed & Ahmed R. Ginidi & Abdullah M. Shaheen & Hany S. E. Mansour, 2023. "A Gradient-Based Optimizer with a Crossover Operator for Distribution Static VAR Compensator (D-SVC) Sizing and Placement in Electrical Systems," Mathematics, MDPI, vol. 11(5), pages 1-30, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1077-:d:1075832
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/5/1077/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/5/1077/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hashim, Fatma A. & Houssein, Essam H. & Hussain, Kashif & Mabrouk, Mai S. & Al-Atabany, Walid, 2022. "Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 84-110.
    2. Gasperic, Samo & Mihalic, Rafael, 2019. "Estimation of the efficiency of FACTS devices for voltage-stability enhancement with PV area criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 144-156.
    3. Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Jesús C. Hernández & Carlos Andres Ramos-Paja & Alberto-Jesus Perea-Moreno, 2022. "A Discrete-Continuous PSO for the Optimal Integration of D-STATCOMs into Electrical Distribution Systems by Considering Annual Power Loss and Investment Costs," Mathematics, MDPI, vol. 10(14), pages 1-16, July.
    4. Amal Amin Mohamed & Salah Kamel & Mohamed H. Hassan & Mohamed I. Mosaad & Mansour Aljohani, 2022. "Optimal Power Flow Analysis Based on Hybrid Gradient-Based Optimizer with Moth–Flame Optimization Algorithm Considering Optimal Placement and Sizing of FACTS/Wind Power," Mathematics, MDPI, vol. 10(3), pages 1-31, January.
    5. Martin Ćalasan & Tatjana Konjić & Katarina Kecojević & Lazar Nikitović, 2020. "Optimal Allocation of Static Var Compensators in Electric Power Systems," Energies, MDPI, vol. 13(12), pages 1-24, June.
    6. Mostafa Elshahed & Mohamed A. Tolba & Ali M. El-Rifaie & Ahmed Ginidi & Abdullah Shaheen & Shazly A. Mohamed, 2023. "An Artificial Rabbits’ Optimization to Allocate PVSTATCOM for Ancillary Service Provision in Distribution Systems," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    7. Hana Merah & Abdelmalek Gacem & Djilani Ben Attous & Abderezak Lashab & Francisco Jurado & Mariam A. Sameh, 2022. "Sizing and Sitting of Static VAR Compensator (SVC) Using Hybrid Optimization of Combined Cuckoo Search (CS) and Antlion Optimization (ALO) Algorithms," Energies, MDPI, vol. 15(13), pages 1-20, July.
    8. Savić, Aleksandar & Đurišić, Željko, 2014. "Optimal sizing and location of SVC devices for improvement of voltage profile in distribution network with dispersed photovoltaic and wind power plants," Applied Energy, Elsevier, vol. 134(C), pages 114-124.
    9. Oscar Danilo Montoya & Luis Fernando Grisales-Noreña & Diego Armando Giral-Ramírez, 2022. "Optimal Placement and Sizing of PV Sources in Distribution Grids Using a Modified Gradient-Based Metaheuristic Optimizer," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    10. Xu, Xu & Li, Jiayong & Xu, Zhao & Zhao, Jian & Lai, Chun Sing, 2019. "Enhancing photovoltaic hosting capacity—A stochastic approach to optimal planning of static var compensator devices in distribution networks," Applied Energy, Elsevier, vol. 238(C), pages 952-962.
    11. Abdullah Shaheen & Ragab El-Sehiemy & Salah Kamel & Ali Selim, 2022. "Optimal Operational Reliability and Reconfiguration of Electrical Distribution Network Based on Jellyfish Search Algorithm," Energies, MDPI, vol. 15(19), pages 1-14, September.
    12. Rezk, Hegazy & Ferahtia, Seydali & Djeroui, Ali & Chouder, Aissa & Houari, Azeddine & Machmoum, Mohamed & Abdelkareem, Mohammad Ali, 2022. "Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer," Energy, Elsevier, vol. 239(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ismail Marouani & Tawfik Guesmi & Badr M. Alshammari & Khalid Alqunun & Ahmed S. Alshammari & Saleh Albadran & Hsan Hadj Abdallah & Salem Rahmani, 2023. "Optimized FACTS Devices for Power System Enhancement: Applications and Solving Methods," Sustainability, MDPI, vol. 15(12), pages 1-58, June.
    2. Abdullah M. Shaheen & Ragab A. El-Sehiemy & Ahmed Ginidi & Abdallah M. Elsayed & Saad F. Al-Gahtani, 2023. "Optimal Allocation of PV-STATCOM Devices in Distribution Systems for Energy Losses Minimization and Voltage Profile Improvement via Hunter-Prey-Based Algorithm," Energies, MDPI, vol. 16(6), pages 1-20, March.
    3. Araby Mahdy & Abdullah Shaheen & Ragab El-Sehiemy & Ahmed Ginidi & Saad F. Al-Gahtani, 2023. "Single- and Multi-Objective Optimization Frameworks of Shape Design of Tubular Linear Synchronous Motor," Energies, MDPI, vol. 16(5), pages 1-27, March.
    4. Sohrab Mirsaeidi & Subash Devkota & Xiaojun Wang & Dimitrios Tzelepis & Ghulam Abbas & Ahmed Alshahir & Jinghan He, 2022. "A Review on Optimization Objectives for Power System Operation Improvement Using FACTS Devices," Energies, MDPI, vol. 16(1), pages 1-24, December.
    5. Nassef, Ahmed M. & Houssein, Essam H. & Helmy, Bahaa El-din & Rezk, Hegazy, 2022. "Modified honey badger algorithm based global MPPT for triple-junction solar photovoltaic system under partial shading condition and global optimization," Energy, Elsevier, vol. 254(PA).
    6. Mostafa Elshahed & Mohamed A. Tolba & Ali M. El-Rifaie & Ahmed Ginidi & Abdullah Shaheen & Shazly A. Mohamed, 2023. "An Artificial Rabbits’ Optimization to Allocate PVSTATCOM for Ancillary Service Provision in Distribution Systems," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    7. Hegazy Rezk & A. G. Olabi & Mohammad Ali Abdelkareem & Abdul Hai Alami & Enas Taha Sayed, 2023. "Optimal Parameter Determination of Membrane Bioreactor to Boost Biohydrogen Production-Based Integration of ANFIS Modeling and Honey Badger Algorithm," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
    8. Kabir, M.N. & Mishra, Y. & Bansal, R.C., 2016. "Probabilistic load flow for distribution systems with uncertain PV generation," Applied Energy, Elsevier, vol. 163(C), pages 343-351.
    9. Mahamed G. H. Omran & Maurice Clerc & Fatme Ghaddar & Ahmad Aldabagh & Omar Tawfik, 2022. "Permutation Tests for Metaheuristic Algorithms," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    10. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    11. Chenyang Gao & Teng Li & Yuelin Gao & Ziyu Zhang, 2024. "A Comprehensive Multi-Strategy Enhanced Biogeography-Based Optimization Algorithm for High-Dimensional Optimization and Engineering Design Problems," Mathematics, MDPI, vol. 12(3), pages 1-35, January.
    12. Oscar Danilo Montoya & Walter Gil-González & Jesus C. Hernández, 2023. "Efficient Integration of Fixed-Step Capacitor Banks and D-STATCOMs in Radial and Meshed Distribution Networks Considering Daily Operation Curves," Energies, MDPI, vol. 16(8), pages 1-23, April.
    13. Chao Zhou & Bing Gao & Haiyue Yang & Xudong Zhang & Jiaqi Liu & Lingling Li, 2022. "Junction Temperature Prediction of Insulated-Gate Bipolar Transistors in Wind Power Systems Based on an Improved Honey Badger Algorithm," Energies, MDPI, vol. 15(19), pages 1-19, October.
    14. Saka, Kenan & Orhan, Mehmet Fatih, 2022. "Analysis of stack operating conditions for a polymer electrolyte membrane fuel cell," Energy, Elsevier, vol. 258(C).
    15. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    16. Hegazy Rezk & A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed, 2023. "A Comprehensive Review and Application of Metaheuristics in Solving the Optimal Parameter Identification Problems," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    17. Fathy, Ahmed & Rezk, Hegazy & Alharbi, Abdullah G. & Yousri, Dalia, 2023. "Proton exchange membrane fuel cell model parameters identification using Chaotically based-bonobo optimizer," Energy, Elsevier, vol. 268(C).
    18. Yang, Xiaohui & Zhang, Zhonglian & Mei, Linghao & Wang, Xiaopeng & Deng, Yeheng & Wei, Shi & Liu, Xiaoping, 2023. "Optimal configuration of improved integrated energy system based on stepped carbon penalty response and improved power to gas," Energy, Elsevier, vol. 263(PD).
    19. Hegazy Rezk & Tabbi Wilberforce & A. G. Olabi & Rania M. Ghoniem & Mohammad Ali Abdelkareem & Enas Taha Sayed, 2023. "Fuzzy Modelling and Optimization to Decide Optimal Parameters of the PEMFC," Energies, MDPI, vol. 16(12), pages 1-16, June.
    20. Xin Yan & Qian Zhang, 2023. "Research on Combination of Distributed Generation Placement and Dynamic Distribution Network Reconfiguration Based on MIBWOA," Sustainability, MDPI, vol. 15(12), pages 1-34, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1077-:d:1075832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.