IDEAS home Printed from https://ideas.repec.org/a/hin/jjopti/3082024.html
   My bibliography  Save this article

A Metaheuristic Algorithm Based on Chemotherapy Science: CSA

Author

Listed:
  • Mohammad Hassan Salmani
  • Kourosh Eshghi

Abstract

Among scientific fields of study, mathematical programming has high status and its importance has led researchers to develop accurate models and effective solving approaches to addressing optimization problems. In particular, metaheuristic algorithms are approximate methods for solving optimization problems whereby good (not necessarily optimum) solutions can be generated via their implementation. In this study, we propose a population-based metaheuristic algorithm according to chemotherapy method to cure cancers that mainly search the infeasible region. As in chemotherapy, Chemotherapy Science Algorithm (CSA) tries to kill inappropriate solutions (cancers and bad cells of the human body); however, this would inevitably risk incidentally destroying some acceptable solutions (healthy cells). In addition, as the cycle of cancer treatment repeats over and over, the algorithm is iterated. To align chemotherapy process with the proposed algorithm, different basic terms and definitions including Infeasibility Function (IF), objective function (OF), Cell Area (CA), and Random Cells (RCs) are presented in this study. In the terminology of algorithms and optimization, IF and OF are mainly applicable as criteria to compare every pair of generated solutions. Finally, we test CSA and its structure using the benchmark Traveling Salesman Problem (TSP).

Suggested Citation

  • Mohammad Hassan Salmani & Kourosh Eshghi, 2017. "A Metaheuristic Algorithm Based on Chemotherapy Science: CSA," Journal of Optimization, Hindawi, vol. 2017, pages 1-13, February.
  • Handle: RePEc:hin:jjopti:3082024
    DOI: 10.1155/2017/3082024
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/7179/2017/3082024.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/7179/2017/3082024.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/3082024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Hassan Salmani & Kourosh Eshghi, 2017. "A Smart Structural Algorithm (SSA) Based on Infeasible Region to Solve Mixed Integer Problems," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global, vol. 8(1), pages 24-44, January.
    2. Rubinstein, Reuven Y., 1997. "Optimization of computer simulation models with rare events," European Journal of Operational Research, Elsevier, vol. 99(1), pages 89-112, May.
    3. Omid Haddad & Abbas Afshar & Miguel Mariño, 2006. "Honey-Bees Mating Optimization (HBMO) Algorithm: A New Heuristic Approach for Water Resources Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(5), pages 661-680, October.
    4. Roberto Battiti & Giampietro Tecchiolli, 1994. "The Reactive Tabu Search," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 126-140, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashish Kumar Singh & Anoj Kumar, 2023. "An improved dynamic weighted particle swarm optimization (IDW-PSO) for continuous optimization problem," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 404-418, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.
    2. Nha Vo‐Thanh & Hans‐Peter Piepho, 2023. "Generating designs for comparative experiments with two blocking factors," Biometrics, The International Biometric Society, vol. 79(4), pages 3574-3585, December.
    3. Buscher, Udo & Shen, Liji, 2009. "An integrated tabu search algorithm for the lot streaming problem in job shops," European Journal of Operational Research, Elsevier, vol. 199(2), pages 385-399, December.
    4. Luca Maria Gambardella & Marco Dorigo, 2000. "An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 237-255, August.
    5. Vittorio Maniezzo, 1999. "Exact and Approximate Nondeterministic Tree-Search Procedures for the Quadratic Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 11(4), pages 358-369, November.
    6. Li, Mingjie & Hao, Jin-Kao & Wu, Qinghua, 2024. "A flow based formulation and a reinforcement learning based strategic oscillation for cross-dock door assignment," European Journal of Operational Research, Elsevier, vol. 312(2), pages 473-492.
    7. Rex K. Kincaid & Keith E. Laba & Sharon L. Padula, 1997. "Quelling Cabin Noise in Turboprop Aircraft via Active Control," Journal of Combinatorial Optimization, Springer, vol. 1(3), pages 229-250, October.
    8. Tiago Maritan Ugulino Araújo & Lisieux Marie M. S. Andrade & Carlos Magno & Lucídio Anjos Formiga Cabral & Roberto Quirino Nascimento & Cláudio N. Meneses, 2016. "DC-GRASP: directing the search on continuous-GRASP," Journal of Heuristics, Springer, vol. 22(4), pages 365-382, August.
    9. C Alabas-Uslu, 2008. "A self-tuning heuristic for a multi-objective vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(7), pages 988-996, July.
    10. Kaveh, Mehrdad & Mesgari, Mohammad Saadi & Saeidian, Bahram, 2023. "Orchard Algorithm (OA): A new meta-heuristic algorithm for solving discrete and continuous optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 95-135.
    11. Juan Carlos Duque & Raúl Ramos & Jordi Suriñach, 2007. "Supervised Regionalization Methods: A Survey," International Regional Science Review, , vol. 30(3), pages 195-220, July.
    12. G W Kinney & R R Hill & J T Moore, 2005. "Devising a quick-running heuristic for an unmanned aerial vehicle (UAV) routing system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(7), pages 776-786, July.
    13. J.C. James & S. Salhi, 2002. "A Tabu Search Heuristic for the Location of Multi-Type Protection Devices on Electrical Supply Tree Networks," Journal of Combinatorial Optimization, Springer, vol. 6(1), pages 81-98, March.
    14. Mario Inostroza-Ponta & Regina Berretta & Pablo Moscato, 2011. "QAPgrid: A Two Level QAP-Based Approach for Large-Scale Data Analysis and Visualization," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-18, January.
    15. Michel Gendreau & Jean-Yves Potvin, 2005. "Metaheuristics in Combinatorial Optimization," Annals of Operations Research, Springer, vol. 140(1), pages 189-213, November.
    16. Zhang, Ruiyou & Zhao, Haishu & Moon, Ilkyeong, 2018. "Range-based truck-state transition modeling method for foldable container drayage services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 225-239.
    17. Liji Shen & Jatinder N. D. Gupta, 2018. "Family scheduling with batch availability in flow shops to minimize makespan," Journal of Scheduling, Springer, vol. 21(2), pages 235-249, April.
    18. N Wassan, 2007. "Reactive tabu adaptive memory programming search for the vehicle routing problem with backhauls," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(12), pages 1630-1641, December.
    19. Shen, Liji & Dauzère-Pérès, Stéphane & Maecker, Söhnke, 2023. "Energy cost efficient scheduling in flexible job-shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 310(3), pages 992-1016.
    20. Swan, Jerry & Adriaensen, Steven & Brownlee, Alexander E.I. & Hammond, Kevin & Johnson, Colin G. & Kheiri, Ahmed & Krawiec, Faustyna & Merelo, J.J. & Minku, Leandro L. & Özcan, Ender & Pappa, Gisele L, 2022. "Metaheuristics “In the Large”," European Journal of Operational Research, Elsevier, vol. 297(2), pages 393-406.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjopti:3082024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.