IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v201y2022icp362-395.html
   My bibliography  Save this article

Aphid–Ant Mutualism: A novel nature-inspired​ metaheuristic algorithm for solving optimization problems

Author

Listed:
  • Eslami, N.
  • Yazdani, S.
  • Mirzaei, M.
  • Hadavandi, E.

Abstract

Swarm intelligence algorithms, which are developed for solving complex optimization problems designed by focusing on simulating the social behavior of one species of simple animals. However, simple animals utilize cooperation to work together that result in more complex and smarter behaviors. This paper proposes a novel population-based optimization paradigm for solving NP-hard problems called “Aphid–Ant Mutualism (AAM)” which is inspired by a unique relationship between aphids and ants’ species. This relationship is called ‘mutualism’. Despite the previous studies that the social behaviors of aphids and ants were simulated, AAM models mutual interaction among aphids and ants in nature. Thus, AAM has new features by incorporating heterogeneous individuals consisting of aphids and ants that live in various colonies together and have different decentralized learning behaviors and objectives. Inspired by nature, colony-based information exchange and using different search strategies including focusing on the individual’s personal knowledge, learning from other colony’s members and information sharing with adjacent colonies are used. This mutualism leads to converging to the global optimum and avoids premature convergence. Performance of AAM is assessed using statistical evaluation, convergence analysis, and a non-parametric Wilcoxon rank-sum test with a 5% significance degree on forty-one benchmarks selected from well-known functions of recent studies and more challenging benchmark functions called CEC 2014, CEC 2017 and also CEC-C06 2019 test suite. Statistical results and comparisons with other meta-heuristic algorithms demonstrate that the AAM algorithm provides promising and competitive outcomes. Furthermore, it can produce more accurate solutions with a faster convergence rate to the global optima.

Suggested Citation

  • Eslami, N. & Yazdani, S. & Mirzaei, M. & Hadavandi, E., 2022. "Aphid–Ant Mutualism: A novel nature-inspired​ metaheuristic algorithm for solving optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 362-395.
  • Handle: RePEc:eee:matcom:v:201:y:2022:i:c:p:362-395
    DOI: 10.1016/j.matcom.2022.05.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422002038
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.05.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hashim, Fatma A. & Houssein, Essam H. & Hussain, Kashif & Mabrouk, Mai S. & Al-Atabany, Walid, 2022. "Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 84-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaveh, Mehrdad & Mesgari, Mohammad Saadi & Saeidian, Bahram, 2023. "Orchard Algorithm (OA): A new meta-heuristic algorithm for solving discrete and continuous optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 95-135.
    2. Mohamed Abdel-Basset & Reda Mohamed & Karam M. Sallam & Ripon K. Chakrabortty, 2022. "Light Spectrum Optimizer: A Novel Physics-Inspired Metaheuristic Optimization Algorithm," Mathematics, MDPI, vol. 10(19), pages 1-63, September.
    3. Yang, Xu & Li, Hongru, 2023. "Multi-sample learning particle swarm optimization with adaptive crossover operation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 246-282.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hegazy Rezk & A. G. Olabi & Mohammad Ali Abdelkareem & Abdul Hai Alami & Enas Taha Sayed, 2023. "Optimal Parameter Determination of Membrane Bioreactor to Boost Biohydrogen Production-Based Integration of ANFIS Modeling and Honey Badger Algorithm," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
    2. Mahamed G. H. Omran & Maurice Clerc & Fatme Ghaddar & Ahmad Aldabagh & Omar Tawfik, 2022. "Permutation Tests for Metaheuristic Algorithms," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    3. Chenyang Gao & Teng Li & Yuelin Gao & Ziyu Zhang, 2024. "A Comprehensive Multi-Strategy Enhanced Biogeography-Based Optimization Algorithm for High-Dimensional Optimization and Engineering Design Problems," Mathematics, MDPI, vol. 12(3), pages 1-35, January.
    4. Chao Zhou & Bing Gao & Haiyue Yang & Xudong Zhang & Jiaqi Liu & Lingling Li, 2022. "Junction Temperature Prediction of Insulated-Gate Bipolar Transistors in Wind Power Systems Based on an Improved Honey Badger Algorithm," Energies, MDPI, vol. 15(19), pages 1-19, October.
    5. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    6. Yang, Xiaohui & Zhang, Zhonglian & Mei, Linghao & Wang, Xiaopeng & Deng, Yeheng & Wei, Shi & Liu, Xiaoping, 2023. "Optimal configuration of improved integrated energy system based on stepped carbon penalty response and improved power to gas," Energy, Elsevier, vol. 263(PD).
    7. Ghareeb Moustafa & Mostafa Elshahed & Ahmed R. Ginidi & Abdullah M. Shaheen & Hany S. E. Mansour, 2023. "A Gradient-Based Optimizer with a Crossover Operator for Distribution Static VAR Compensator (D-SVC) Sizing and Placement in Electrical Systems," Mathematics, MDPI, vol. 11(5), pages 1-30, February.
    8. Ren, Xin-Yu & Li, Ling-Ling & Ji, Bing-Xiang & Liu, Jia-Qi, 2024. "Design and analysis of solar hybrid combined cooling, heating and power system: A bi-level optimization model," Energy, Elsevier, vol. 292(C).
    9. Arup Das & Subhojit Dawn & Sadhan Gope & Taha Selim Ustun, 2022. "A Strategy for System Risk Mitigation Using FACTS Devices in a Wind Incorporated Competitive Power System," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    10. Pan, Jeng-Shyang & Zhang, Li-Gang & Wang, Ruo-Bin & Snášel, Václav & Chu, Shu-Chuan, 2022. "Gannet optimization algorithm : A new metaheuristic algorithm for solving engineering optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 343-373.
    11. Vikneswari Someetheram & Muhammad Fadhil Marsani & Mohd Shareduwan Mohd Kasihmuddin & Nur Ezlin Zamri & Siti Syatirah Muhammad Sidik & Siti Zulaikha Mohd Jamaludin & Mohd. Asyraf Mansor, 2022. "Random Maximum 2 Satisfiability Logic in Discrete Hopfield Neural Network Incorporating Improved Election Algorithm," Mathematics, MDPI, vol. 10(24), pages 1-29, December.
    12. Araby Mahdy & Abdullah Shaheen & Ragab El-Sehiemy & Ahmed Ginidi & Saad F. Al-Gahtani, 2023. "Single- and Multi-Objective Optimization Frameworks of Shape Design of Tubular Linear Synchronous Motor," Energies, MDPI, vol. 16(5), pages 1-27, March.
    13. Lei Chen & Yikai Zhao & Yunpeng Ma & Bingjie Zhao & Changzhou Feng, 2023. "Improving Wild Horse Optimizer: Integrating Multistrategy for Robust Performance across Multiple Engineering Problems and Evaluation Benchmarks," Mathematics, MDPI, vol. 11(18), pages 1-35, September.
    14. R, Revathi & N, Senthilnathan & V, Kumar Chinnaiyan, 2024. "Hybrid optimization approach for power scheduling with PV-battery system in smart grids," Energy, Elsevier, vol. 290(C).
    15. Elham Ghanbari-Adivi & Mohammad Ehteram & Alireza Farrokhi & Zohreh Sheikh Khozani, 2022. "Combining Radial Basis Function Neural Network Models and Inclusive Multiple Models for Predicting Suspended Sediment Loads," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4313-4342, September.
    16. Turgut, Oguz Emrah & Turgut, Mert Sinan, 2023. "Local search enhanced Aquila optimization algorithm ameliorated with an ensemble of Wavelet mutation strategies for complex optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 302-374.
    17. Nassef, Ahmed M. & Houssein, Essam H. & Helmy, Bahaa El-din & Rezk, Hegazy, 2022. "Modified honey badger algorithm based global MPPT for triple-junction solar photovoltaic system under partial shading condition and global optimization," Energy, Elsevier, vol. 254(PA).
    18. Ahmed, Marzia & Sulaiman, Mohd Herwan & Mohamad, Ahmad Johari & Rahman, Mostafijur, 2024. "Gooseneck barnacle optimization algorithm: A novel nature inspired optimization theory and application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 248-265.
    19. Thirunavukkarasu, M. & Lala, Himadri & Sawle, Yashwant, 2023. "Techno-economic-environmental analysis of off-grid hybrid energy systems using honey badger optimizer," Renewable Energy, Elsevier, vol. 218(C).
    20. Zhang, Jinzhong & Zhang, Gang & Kong, Min & Zhang, Tan & Wang, Duansong & Chen, Rui, 2023. "CWOA: A novel complex-valued encoding whale optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 151-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:201:y:2022:i:c:p:362-395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.