IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v20y2012i3p393-408.html
   My bibliography  Save this article

Stochastic analysis of maintenance process costs in the IT industry: a case study

Author

Listed:
  • Ludvík Friebel
  • Jana Friebelová

Abstract

In this contribution we propose a method for determining the type of computer component whose replacement minimizes repair costs depending on the warranty period. Components that most often cause a dysfunctional state of a computer are first identified using records of warranty repairs from the customer service department. Repair costs covered by warranty are then calculated using a semi-analytic method and simulation of the most critical component lifetime in different user environments. It was assumed that the use of a cheaper critical component generally results in higher costs for computer warranty services due to shorter failure-free runs. For this reason, the company should choose a compromise between price and quality. Input data was taken from the records supplied by the computer assembling company (times between failures) and from the records from time tracking software (computer up-time). Copyright Springer-Verlag 2012

Suggested Citation

  • Ludvík Friebel & Jana Friebelová, 2012. "Stochastic analysis of maintenance process costs in the IT industry: a case study," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(3), pages 393-408, September.
  • Handle: RePEc:spr:cejnor:v:20:y:2012:i:3:p:393-408
    DOI: 10.1007/s10100-011-0213-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10100-011-0213-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10100-011-0213-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rubinstein, Reuven Y., 1997. "Optimization of computer simulation models with rare events," European Journal of Operational Research, Elsevier, vol. 99(1), pages 89-112, May.
    2. Lee, Hsu-Hua, 2008. "The investment model in preventive maintenance in multi-level production systems," International Journal of Production Economics, Elsevier, vol. 112(2), pages 816-828, April.
    3. Cho, Danny I. & Parlar, Mahmut, 1991. "A survey of maintenance models for multi-unit systems," European Journal of Operational Research, Elsevier, vol. 51(1), pages 1-23, March.
    4. Savaş Dayanik & Ülkü Gürler, 2002. "An Adaptive Bayesian Replacement Policy with Minimal Repair," Operations Research, INFORMS, vol. 50(3), pages 552-558, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Josef Jablonsky & Petr Fiala, 2012. "Special issue of the Czech Society for Operations Research," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(3), pages 367-368, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Insua, David Rios & Ruggeri, Fabrizio & Soyer, Refik & Wilson, Simon, 2020. "Advances in Bayesian decision making in reliability," European Journal of Operational Research, Elsevier, vol. 282(1), pages 1-18.
    2. Nourelfath, Mustapha, 2011. "Service level robustness in stochastic production planning under random machine breakdowns," European Journal of Operational Research, Elsevier, vol. 212(1), pages 81-88, July.
    3. Xiang, Yisha, 2013. "Joint optimization of X¯ control chart and preventive maintenance policies: A discrete-time Markov chain approach," European Journal of Operational Research, Elsevier, vol. 229(2), pages 382-390.
    4. Mamabolo R. M. & Beichelt F. E., 2004. "Maintenance Policies with Minimal Repair," Stochastics and Quality Control, De Gruyter, vol. 19(2), pages 143-166, January.
    5. Coria, V.H. & Maximov, S. & Rivas-Dávalos, F. & Melchor, C.L. & Guardado, J.L., 2015. "Analytical method for optimization of maintenance policy based on available system failure data," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 55-63.
    6. Bruns, Peter, 2002. "Optimal maintenance strategies for systems with partial repair options and without assuming bounded costs," European Journal of Operational Research, Elsevier, vol. 139(1), pages 146-165, May.
    7. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    8. Vineyard, Michael & Amoako-Gyampah, Kwasi & Meredith, Jack R., 1999. "Failure rate distributions for flexible manufacturing systems: An empirical study," European Journal of Operational Research, Elsevier, vol. 116(1), pages 139-155, July.
    9. de Brito, Marisa P. & Dekker, Rommert, 2003. "Modelling product returns in inventory control--exploring the validity of general assumptions," International Journal of Production Economics, Elsevier, vol. 81(1), pages 225-241, January.
    10. Wang, Wenbin & Banjevic, Dragan & Pecht, Michael, 2010. "A multi-component and multi-failure mode inspection model based on the delay time concept," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 912-920.
    11. Mattrand, C. & Bourinet, J.-M., 2014. "The cross-entropy method for reliability assessment of cracked structures subjected to random Markovian loads," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 171-182.
    12. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hybrid opportunistic maintenance policy for serial-parallel multi-station manufacturing systems with spare part overlap," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    13. Thomas Bittar & Pierre Carpentier & Jean-Philippe Chancelier & Jérôme Lonchampt, 2022. "A decomposition method by interaction prediction for the optimization of maintenance scheduling," Annals of Operations Research, Springer, vol. 316(1), pages 229-267, September.
    14. Kin-Ping Hui, 2011. "Cooperative Cross-Entropy method for generating entangled networks," Annals of Operations Research, Springer, vol. 189(1), pages 205-214, September.
    15. Mathieu Balesdent & Jérôme Morio & Loïc Brevault, 2016. "Rare Event Probability Estimation in the Presence of Epistemic Uncertainty on Input Probability Distribution Parameters," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 197-216, March.
    16. Tsiliyannis, Christos Aristeides, 2015. "Sustainability by cyclic manufacturing: Assessment of resource preservation under uncertain growth and returns," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 155-170.
    17. Salari, Nooshin & Makis, Viliam, 2017. "Comparison of two maintenance policies for a multi-unit system considering production and demand rates," International Journal of Production Economics, Elsevier, vol. 193(C), pages 381-391.
    18. Fleischmann, Moritz & Bloemhof-Ruwaard, Jacqueline M. & Dekker, Rommert & van der Laan, Erwin & van Nunen, Jo A. E. E. & Van Wassenhove, Luk N., 1997. "Quantitative models for reverse logistics: A review," European Journal of Operational Research, Elsevier, vol. 103(1), pages 1-17, November.
    19. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    20. Hoskins, R. P. & Brint, A. T. & Strbac, G., 1999. "A structured approach to Asset Management within the electricity industry," Utilities Policy, Elsevier, vol. 7(4), pages 221-232, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:20:y:2012:i:3:p:393-408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.