IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v181y2021icp298-315.html
   My bibliography  Save this article

Analysis and numerical simulation of fractional Biswas–Milovic model

Author

Listed:
  • Prakash, Amit
  • Kaur, Hardish

Abstract

In this paper, we investigate the fractional Biswas–Milovic model having Kerr and parabolic law nonlinearities via the application of fractional complex transform (FCT) coupled with the homotopy perturbation transform technique (HPTT). HPTT is a fusion of homotopy perturbation method with Laplace transform The obtained numerical results are demonstrated through graphs and tables. The numerical simulation results assure the reliability of the proposed technique with less computational time and high accuracy of the results. Also, comparative simulation studies have been performed to show that the proposed technique provides better approximations than the residual power series method (RPSM).

Suggested Citation

  • Prakash, Amit & Kaur, Hardish, 2021. "Analysis and numerical simulation of fractional Biswas–Milovic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 298-315.
  • Handle: RePEc:eee:matcom:v:181:y:2021:i:c:p:298-315
    DOI: 10.1016/j.matcom.2020.09.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420303268
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.09.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srivastava, H.M. & Dubey, V.P. & Kumar, R. & Singh, J. & Kumar, D. & Baleanu, D., 2020. "An efficient computational approach for a fractional-order biological population model with carrying capacity," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Goyal, Manish & Baskonus, Haci Mehmet & Prakash, Amit, 2020. "Regarding new positive, bounded and convergent numerical solution of nonlinear time fractional HIV/AIDS transmission model," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Singh, Jagdev & Kumar, Devendra & Hammouch, Zakia & Atangana, Abdon, 2018. "A fractional epidemiological model for computer viruses pertaining to a new fractional derivative," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 504-515.
    4. Kumar, Devendra & Singh, Jagdev & Baleanu, Dumitru & Sushila,, 2018. "Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 155-167.
    5. Prakash, Amit & Kaur, Hardish, 2019. "Analysis and numerical simulation of fractional order Cahn–Allen model with Atangana–Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 134-142.
    6. Ravichandran, C. & Logeswari, K. & Jarad, Fahd, 2019. "New results on existence in the framework of Atangana–Baleanu derivative for fractional integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 194-200.
    7. Goswami, Amit & Singh, Jagdev & Kumar, Devendra & Sushila,, 2019. "An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 563-575.
    8. Prakash, Amit & Kaur, Hardish, 2017. "Numerical solution for fractional model of Fokker-Planck equation by using q-HATM," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 99-110.
    9. Prakash, Amit & Kumar, Manoj & Baleanu, Dumitru, 2018. "A new iterative technique for a fractional model of nonlinear Zakharov–Kuznetsov equations via Sumudu transform," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 30-40.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saad, Khaled M. & Gómez-Aguilar, J.F. & Almadiy, Abdulrhman A., 2020. "A fractional numerical study on a chronic hepatitis C virus infection model with immune response," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Ravichandran, C. & Logeswari, K. & Panda, Sumati Kumari & Nisar, Kottakkaran Sooppy, 2020. "On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    4. Aliyu, Aliyu Isa & Inc, Mustafa & Yusuf, Abdullahi & Baleanu, Dumitru, 2018. "A fractional model of vertical transmission and cure of vector-borne diseases pertaining to the Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 268-277.
    5. Marasi, H.R. & Derakhshan, M.H., 2023. "Numerical simulation of time variable fractional order mobile–immobile advection–dispersion model based on an efficient hybrid numerical method with stability and convergence analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 368-389.
    6. Abdeljawad, Thabet & Atangana, Abdon & Gómez-Aguilar, J.F. & Jarad, Fahd, 2019. "On a more general fractional integration by parts formulae and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    7. Jing Chang & Jin Zhang & Ming Cai, 2021. "Series Solutions of High-Dimensional Fractional Differential Equations," Mathematics, MDPI, vol. 9(17), pages 1-21, August.
    8. BİLDİK, Necdet & DENİZ, Sinan & SAAD, Khaled M., 2020. "A comparative study on solving fractional cubic isothermal auto-catalytic chemical system via new efficient technique," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    9. Prakash, Amit & Kaur, Hardish, 2019. "Analysis and numerical simulation of fractional order Cahn–Allen model with Atangana–Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 134-142.
    10. Prakash, Amit & Kumar, Manoj & Baleanu, Dumitru, 2018. "A new iterative technique for a fractional model of nonlinear Zakharov–Kuznetsov equations via Sumudu transform," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 30-40.
    11. Mohamed Kharrat & Hassen Arfaoui, 2023. "A New Stabled Relaxation Method for Pricing European Options Under the Time-Fractional Vasicek Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1745-1763, April.
    12. Bhatter, Sanjay & Mathur, Amit & Kumar, Devendra & Singh, Jagdev, 2020. "A new analysis of fractional Drinfeld–Sokolov–Wilson model with exponential memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    13. Taneco-Hernández, M.A. & Morales-Delgado, V.F. & Gómez-Aguilar, J.F., 2019. "Fundamental solutions of the fractional Fresnel equation in the real half-line," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 807-827.
    14. Mohamed Kharrat, 2023. "Stability Analysis for Pricing European Options Regarding the Interest Rate Generated by the Time Fractional Cox-Ingersoll-Ross Processes," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-13, June.
    15. Dwivedi, Kushal Dhar & Singh, Jagdev, 2021. "Numerical solution of two-dimensional fractional-order reaction advection sub-diffusion equation with finite-difference Fibonacci collocation method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 38-50.
    16. Khan, Hasib & Gómez-Aguilar, J.F. & Khan, Aziz & Khan, Tahir Saeed, 2019. "Stability analysis for fractional order advection–reaction diffusion system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 737-751.
    17. Saad, Khaled M. & Srivastava, H.M. & Gómez-Aguilar, J.F., 2020. "A Fractional Quadratic autocatalysis associated with chemical clock reactions involving linear inhibition," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    18. Singh, Harendra & Srivastava, H.M., 2019. "Jacobi collocation method for the approximate solution of some fractional-order Riccati differential equations with variable coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1130-1149.
    19. Ma, Junjie & Liu, Huilan, 2020. "A sparse fractional Jacobi–Galerkin–Levin quadrature rule for highly oscillatory integrals," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    20. Tyagi, Swati & Martha, Subash C. & Abbas, Syed & Debbouche, Amar, 2021. "Mathematical modeling and analysis for controlling the spread of infectious diseases," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:181:y:2021:i:c:p:298-315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.