IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v536y2019ics037843711931430x.html
   My bibliography  Save this article

On a more general fractional integration by parts formulae and applications

Author

Listed:
  • Abdeljawad, Thabet
  • Atangana, Abdon
  • Gómez-Aguilar, J.F.
  • Jarad, Fahd

Abstract

The integration by part comes from the product rule of classical differentiation and integration. The concept was adapted in fractional differential and integration and has several applications in control theory. However, the formulation in fractional calculus is the classical integral of a fractional derivative of a product of a fractional derivative of a given function f and a function g. We argue that, this formulation could be done using only fractional operators; thus, we develop fractional integration by parts for fractional integrals, Riemann–Liouville, Liouville–Caputo, Caputo–Fabrizio and Atangana–Baleanu fractional derivatives. We allow the left and right fractional integrals of order α>0 to act on the integrated terms instead of the usual integral and then make use of the fractional type Leibniz rules to formulate the integration by parts by means of new generalized type fractional operators with binomial coefficients defined for analytic functions. In the case α=1, our formulae of fractional integration by parts results in previously obtained integration by parts in fractional calculus. The two disciplines or branches of mathematics are built differently, while classical differentiation is built with the concept of rate of change of a given function, a fractional differential operator is a convolution.

Suggested Citation

  • Abdeljawad, Thabet & Atangana, Abdon & Gómez-Aguilar, J.F. & Jarad, Fahd, 2019. "On a more general fractional integration by parts formulae and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
  • Handle: RePEc:eee:phsmap:v:536:y:2019:i:c:s037843711931430x
    DOI: 10.1016/j.physa.2019.122494
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711931430X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122494?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Devendra & Singh, Jagdev & Baleanu, Dumitru & Sushila,, 2018. "Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 155-167.
    2. Singh, Jagdev & Kumar, Devendra & Baleanu, Dumitru & Rathore, Sushila, 2018. "An efficient numerical algorithm for the fractional Drinfeld–Sokolov–Wilson equation," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 12-24.
    3. Altaf Khan, Muhammad & Ullah, Saif & Farooq, Muhammad, 2018. "A new fractional model for tuberculosis with relapse via Atangana–Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 227-238.
    4. Singh, Jagdev & Kumar, Devendra & Hammouch, Zakia & Atangana, Abdon, 2018. "A fractional epidemiological model for computer viruses pertaining to a new fractional derivative," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 504-515.
    5. Owolabi, Kolade M., 2018. "Analysis and numerical simulation of multicomponent system with Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 127-134.
    6. Owolabi, Kolade M., 2018. "Numerical patterns in system of integer and non-integer order derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 143-153.
    7. Ullah, Saif & Altaf Khan, Muhammad & Farooq, Muhammad, 2018. "A fractional model for the dynamics of TB virus," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 63-71.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Wei & Veeresha, P. & Prakasha, D.G. & Baskonus, Haci Mehmet & Yel, Gulnur, 2020. "New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Rhaima, Mohamed, 2023. "Ulam–Hyers stability for an impulsive Caputo–Hadamard fractional neutral stochastic differential equations with infinite delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 281-295.
    3. Ravichandran, C. & Logeswari, K. & Panda, Sumati Kumari & Nisar, Kottakkaran Sooppy, 2020. "On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Zguaid, Khalid & El Alaoui, Fatima Zahrae & Boutoulout, Ali, 2021. "Regional observability for linear time fractional systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 77-87.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    2. Owolabi, Kolade M., 2019. "Mathematical modelling and analysis of love dynamics: A fractional approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 849-865.
    3. Taneco-Hernández, M.A. & Morales-Delgado, V.F. & Gómez-Aguilar, J.F., 2019. "Fundamental solutions of the fractional Fresnel equation in the real half-line," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 807-827.
    4. Saad, Khaled M. & Srivastava, H.M. & Gómez-Aguilar, J.F., 2020. "A Fractional Quadratic autocatalysis associated with chemical clock reactions involving linear inhibition," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    5. Singh, Harendra & Srivastava, H.M., 2019. "Jacobi collocation method for the approximate solution of some fractional-order Riccati differential equations with variable coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1130-1149.
    6. Prakash, Amit & Kaur, Hardish, 2021. "Analysis and numerical simulation of fractional Biswas–Milovic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 298-315.
    7. Singh, C.S. & Singh, Harendra & Singh, Somveer & Kumar, Devendra, 2019. "An efficient computational method for solving system of nonlinear generalized Abel integral equations arising in astrophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1440-1448.
    8. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    9. Wang, Wanting & Khan, Muhammad Altaf & Fatmawati, & Kumam, P. & Thounthong, P., 2019. "A comparison study of bank data in fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 369-384.
    10. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 32-40.
    11. Karaagac, Berat, 2019. "A study on fractional Klein Gordon equation with non-local and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 218-229.
    12. Owolabi, Kolade M., 2018. "Numerical patterns in reaction–diffusion system with the Caputo and Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 160-169.
    13. Aliyu, Aliyu Isa & Inc, Mustafa & Yusuf, Abdullahi & Baleanu, Dumitru, 2018. "A fractional model of vertical transmission and cure of vector-borne diseases pertaining to the Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 268-277.
    14. Owolabi, Kolade M. & Atangana, Abdon, 2019. "Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 41-49.
    15. Marasi, H.R. & Derakhshan, M.H., 2023. "Numerical simulation of time variable fractional order mobile–immobile advection–dispersion model based on an efficient hybrid numerical method with stability and convergence analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 368-389.
    16. Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
    17. Singh, Jagdev, 2020. "Analysis of fractional blood alcohol model with composite fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    18. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 111-118.
    19. Vázquez-Guerrero, P. & Gómez-Aguilar, J.F. & Santamaria, F. & Escobar-Jiménez, R.F., 2019. "Synchronization patterns with strong memory adaptive control in networks of coupled neurons with chimera states dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 167-175.
    20. Li, Zhongfei & Liu, Zhuang & Khan, Muhammad Altaf, 2020. "Fractional investigation of bank data with fractal-fractional Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:536:y:2019:i:c:s037843711931430x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.