IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v523y2019icp1130-1149.html
   My bibliography  Save this article

Jacobi collocation method for the approximate solution of some fractional-order Riccati differential equations with variable coefficients

Author

Listed:
  • Singh, Harendra
  • Srivastava, H.M.

Abstract

This paper presents a computational method for the approximate solution of arbitrary-order non-linear fractional Riccati differential equations with variable coefficients. Proposed computational method is a combination of the operational matrix of integration method and the collocation method associated with the Jacobi polynomials. Convergence analysis of the proposed method is provided. Numerical results for different fractional orders of the Riccati differential equations are discussed. Figures and tables are used to show the numerical results derived from the proposed computational method for particular cases of Jacobi polynomials such as the Legendre polynomials, the Chebyshev polynomials of the second kind, the Chebyshev polynomials of the third kind, the Chebyshev polynomial of the fourth kind, and the Gegenbauer (or ultraspherical) polynomials. Numerical results from the proposed methods are compared from those derived by using the existing analytical and numerical methods. It is observed that the results from the proposed method are more accurate. Maximum absolute error and the root-mean square error tables are given for all five kinds of polynomials for comparison purposes.

Suggested Citation

  • Singh, Harendra & Srivastava, H.M., 2019. "Jacobi collocation method for the approximate solution of some fractional-order Riccati differential equations with variable coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1130-1149.
  • Handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:1130-1149
    DOI: 10.1016/j.physa.2019.04.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119304686
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.04.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Odibat, Zaid & Momani, Shaher, 2008. "Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 167-174.
    2. Kumar, Devendra & Singh, Jagdev & Baleanu, Dumitru & Sushila,, 2018. "Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 155-167.
    3. Kashkari, Bothayna S.H. & Syam, Muhammed I., 2016. "Fractional-order Legendre operational matrix of fractional integration for solving the Riccati equation with fractional order," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 281-291.
    4. Singh, Jagdev & Kumar, Devendra & Baleanu, Dumitru & Rathore, Sushila, 2018. "An efficient numerical algorithm for the fractional Drinfeld–Sokolov–Wilson equation," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 12-24.
    5. Singh, Jagdev & Kumar, Devendra & Hammouch, Zakia & Atangana, Abdon, 2018. "A fractional epidemiological model for computer viruses pertaining to a new fractional derivative," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 504-515.
    6. Behroozifar, M. & Sazmand, A., 2017. "An approximate solution based on Jacobi polynomials for time-fractional convection–diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 1-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Harendra, 2020. "Analysis for fractional dynamics of Ebola virus model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Izadi, Mohammad & Srivastava, H.M., 2021. "Numerical approximations to the nonlinear fractional-order Logistic population model with fractional-order Bessel and Legendre bases," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    3. Srivastava, H.M. & Saad, Khaled M. & Khader, M.M., 2020. "An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Haifa Bin Jebreen & Ioannis Dassios, 2022. "A Biorthogonal Hermite Cubic Spline Galerkin Method for Solving Fractional Riccati Equation," Mathematics, MDPI, vol. 10(9), pages 1-14, April.
    5. Singh, Harendra, 2021. "Analysis of drug treatment of the fractional HIV infection model of CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Saad, Khaled M. & Srivastava, H.M. & Gómez-Aguilar, J.F., 2020. "A Fractional Quadratic autocatalysis associated with chemical clock reactions involving linear inhibition," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    7. Singh, Harendra & Baleanu, Dumitru & Singh, Jagdev & Dutta, Hemen, 2021. "Computational study of fractional order smoking model," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    2. Abdeljawad, Thabet & Atangana, Abdon & Gómez-Aguilar, J.F. & Jarad, Fahd, 2019. "On a more general fractional integration by parts formulae and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    3. Taneco-Hernández, M.A. & Morales-Delgado, V.F. & Gómez-Aguilar, J.F., 2019. "Fundamental solutions of the fractional Fresnel equation in the real half-line," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 807-827.
    4. Saad, Khaled M. & Srivastava, H.M. & Gómez-Aguilar, J.F., 2020. "A Fractional Quadratic autocatalysis associated with chemical clock reactions involving linear inhibition," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    5. Prakash, Amit & Kaur, Hardish, 2021. "Analysis and numerical simulation of fractional Biswas–Milovic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 298-315.
    6. Singh, C.S. & Singh, Harendra & Singh, Somveer & Kumar, Devendra, 2019. "An efficient computational method for solving system of nonlinear generalized Abel integral equations arising in astrophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1440-1448.
    7. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    8. Owolabi, Kolade M., 2018. "Numerical patterns in reaction–diffusion system with the Caputo and Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 160-169.
    9. Aliyu, Aliyu Isa & Inc, Mustafa & Yusuf, Abdullahi & Baleanu, Dumitru, 2018. "A fractional model of vertical transmission and cure of vector-borne diseases pertaining to the Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 268-277.
    10. Marasi, H.R. & Derakhshan, M.H., 2023. "Numerical simulation of time variable fractional order mobile–immobile advection–dispersion model based on an efficient hybrid numerical method with stability and convergence analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 368-389.
    11. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    12. Singh, Jagdev, 2020. "Analysis of fractional blood alcohol model with composite fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    13. Saad, Khaled M. & Gómez-Aguilar, J.F. & Almadiy, Abdulrhman A., 2020. "A fractional numerical study on a chronic hepatitis C virus infection model with immune response," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    14. Bhatter, Sanjay & Mathur, Amit & Kumar, Devendra & Singh, Jagdev, 2020. "A new analysis of fractional Drinfeld–Sokolov–Wilson model with exponential memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    15. Owolabi, Kolade M., 2020. "High-dimensional spatial patterns in fractional reaction-diffusion system arising in biology," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    16. Khan, Hasib & Gómez-Aguilar, J.F. & Khan, Aziz & Khan, Tahir Saeed, 2019. "Stability analysis for fractional order advection–reaction diffusion system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 737-751.
    17. Bota, Constantin & Căruntu, Bogdan, 2017. "Analytical approximate solutions for quadratic Riccati differential equation of fractional order using the Polynomial Least Squares Method," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 339-345.
    18. Ma, Junjie & Liu, Huilan, 2020. "A sparse fractional Jacobi–Galerkin–Levin quadrature rule for highly oscillatory integrals," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    19. Atanacković, Teodor M. & Janev, Marko & Pilipović, Stevan, 2018. "Non-linear boundary value problems involving Caputo derivatives of complex fractional order," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 326-342.
    20. Ravichandran, C. & Logeswari, K. & Panda, Sumati Kumari & Nisar, Kottakkaran Sooppy, 2020. "On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:1130-1149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.