Numerical solution for fractional model of Fokker-Planck equation by using q-HATM
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2017.10.003
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Limei Yan, 2013. "Numerical Solutions of Fractional Fokker-Planck Equations Using Iterative Laplace Transform Method," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-7, December.
- Magdziarz, Marcin, 2009. "Stochastic representation of subdiffusion processes with time-dependent drift," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3238-3252, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Prakash, Amit & Kumar, Manoj & Baleanu, Dumitru, 2018. "A new iterative technique for a fractional model of nonlinear Zakharov–Kuznetsov equations via Sumudu transform," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 30-40.
- Prakash, Amit & Kaur, Hardish, 2021. "Analysis and numerical simulation of fractional Biswas–Milovic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 298-315.
- Rao, Anjali & Vats, Ramesh Kumar & Yadav, Sanjeev, 2024. "Numerical study of nonlinear time-fractional Caudrey–Dodd–Gibbon–Sawada–Kotera equation arising in propagation of waves," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
- Prakash, Amit & Kaur, Hardish, 2019. "Analysis and numerical simulation of fractional order Cahn–Allen model with Atangana–Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 134-142.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hainaut, Donatien & Leonenko, Nikolai, 2020. "Option pricing in illiquid markets: a fractional jump-diffusion approach," LIDAM Discussion Papers ISBA 2020003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Gu, Hui & Liang, Jin-Rong & Zhang, Yun-Xiu, 2012. "Time-changed geometric fractional Brownian motion and option pricing with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3971-3977.
- Kei Kobayashi & Hyunchul Park, 2023. "Spectral Heat Content for Time-Changed Killed Brownian Motions," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1148-1180, June.
- Wenfeng He & Nana Chen & Ioannis Dassios & Nehad Ali Shah & Jae Dong Chung, 2021. "Fractional System of Korteweg-De Vries Equations via Elzaki Transform," Mathematics, MDPI, vol. 9(6), pages 1-18, March.
- Kevin Z. Tong & Allen Liu, 2019. "Option pricing in a subdiffusive constant elasticity of variance (CEV) model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 1-21, June.
- Dupret, Jean-Loup & Hainaut, Donatien, 2022. "A subdiffusive stochastic volatility jump model," LIDAM Discussion Papers ISBA 2022001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Qing Tang & Fabio Camilli, 2020. "Variational Time-Fractional Mean Field Games," Dynamic Games and Applications, Springer, vol. 10(2), pages 573-588, June.
- Hainaut, Donatien, 2019. "Credit risk modelling with fractional self-excited processes," LIDAM Discussion Papers ISBA 2019027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Karipova, Gulnur & Magdziarz, Marcin, 2017. "Pricing of basket options in subdiffusive fractional Black–Scholes model," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 245-253.
- Kobayashi, Kei, 2016. "Small ball probabilities for a class of time-changed self-similar processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 155-161.
- Foad Shokrollahi, 2016. "Subdiffusive fractional Brownian motion regime for pricing currency options under transaction costs," Papers 1612.06665, arXiv.org, revised Aug 2017.
- Gajda, Janusz & Magdziarz, Marcin, 2014. "Large deviations for subordinated Brownian motion and applications," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 149-156.
- Hainaut, Donatien, 2019. "Fractional Hawkes processes," LIDAM Discussion Papers ISBA 2019016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Hainaut, Donatien, 2020. "Fractional Hawkes processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
- Guo, Zhidong & Yuan, Hongjun, 2014. "Pricing European option under the time-changed mixed Brownian-fractional Brownian model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 73-79.
- Kerger, Phillip & Kobayashi, Kei, 2020. "Parameter estimation for one-sided heavy-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 164(C).
- Meerschaert, Mark M. & Toaldo, Bruno, 2019. "Relaxation patterns and semi-Markov dynamics," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2850-2879.
- Kumar, A. & Wyłomańska, A. & Połoczański, R. & Sundar, S., 2017. "Fractional Brownian motion time-changed by gamma and inverse gamma process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 648-667.
- Hassan Khan & Adnan Khan & Maysaa Al-Qurashi & Rasool Shah & Dumitru Baleanu, 2020. "Modified Modelling for Heat Like Equations within Caputo Operator," Energies, MDPI, vol. 13(8), pages 1-14, April.
- Hainaut, Donatien, 2020. "Credit risk modelling with fractional self-excited processes," LIDAM Discussion Papers ISBA 2020002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
More about this item
Keywords
Fokker-Planck equation; Laplace transform method; q-homotopy analysis transform method (q-HATM); Analytic solution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:105:y:2017:i:c:p:99-110. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.