IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v61y2023i4d10.1007_s10614-022-10264-4.html
   My bibliography  Save this article

A New Stabled Relaxation Method for Pricing European Options Under the Time-Fractional Vasicek Model

Author

Listed:
  • Mohamed Kharrat

    (Jouf University)

  • Hassen Arfaoui

    (Jouf University)

Abstract

Our objective is to solve the time-fractional Vasicek model for European options with a new stabled relaxation method. This new approach is based on the splitting method. Some numerical tests are presented to show the stability and the reliability of our approach with the theory of options.

Suggested Citation

  • Mohamed Kharrat & Hassen Arfaoui, 2023. "A New Stabled Relaxation Method for Pricing European Options Under the Time-Fractional Vasicek Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1745-1763, April.
  • Handle: RePEc:kap:compec:v:61:y:2023:i:4:d:10.1007_s10614-022-10264-4
    DOI: 10.1007/s10614-022-10264-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-022-10264-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-022-10264-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    2. Sun, Lin & Chen, Yiming, 2021. "Numerical analysis of variable fractional viscoelastic column based on two-dimensional Legendre wavelets algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Srivastava, H.M. & Dubey, V.P. & Kumar, R. & Singh, J. & Kumar, D. & Baleanu, D., 2020. "An efficient computational approach for a fractional-order biological population model with carrying capacity," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    5. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    7. Goswami, Amit & Singh, Jagdev & Kumar, Devendra & Sushila,, 2019. "An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 563-575.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Kharrat, 2023. "Stability Analysis for Pricing European Options Regarding the Interest Rate Generated by the Time Fractional Cox-Ingersoll-Ross Processes," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-13, June.
    2. Dong-Mei Zhu & Jiejun Lu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "Option Pricing Under a Stochastic Interest Rate and Volatility Model with Hidden Markovian Regime-Switching," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 555-586, February.
    3. Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.
    4. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    5. Ako Doffou & Jimmy E. Hilliard, 2001. "Pricing Currency Options Under Stochastic Interest Rates And Jump-Diffusion Processes," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 24(4), pages 565-585, December.
    6. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    7. Peter Hördahl & David Vestin, 2005. "Interpreting Implied Risk-Neutral Densities: The Role of Risk Premia," Review of Finance, European Finance Association, vol. 9(1), pages 97-137.
    8. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    9. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.
    10. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    11. Emmanuel Coffie, 2022. "Numerical Method for Highly Non-linear Mean-reverting Asset Price Model with CEV-type Process," Papers 2205.00634, arXiv.org.
    12. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    13. Kristensen, Dennis, 2008. "Estimation of partial differential equations with applications in finance," Journal of Econometrics, Elsevier, vol. 144(2), pages 392-408, June.
    14. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    15. Chen, Ding & Härkönen, Hannu J. & Newton, David P., 2014. "Advancing the universality of quadrature methods to any underlying process for option pricing," Journal of Financial Economics, Elsevier, vol. 114(3), pages 600-612.
    16. repec:uts:finphd:41 is not listed on IDEAS
    17. Maria Cristina Recchioni & Yu Sun & Gabriele Tedeschi, 2017. "Can negative interest rates really affect option pricing? Empirical evidence from an explicitly solvable stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1257-1275, August.
    18. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
    19. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    20. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    21. Qian Li & Li Wang, 2023. "Option pricing under jump diffusion model," Papers 2305.10678, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:61:y:2023:i:4:d:10.1007_s10614-022-10264-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.