IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v181y2021icp38-50.html
   My bibliography  Save this article

Numerical solution of two-dimensional fractional-order reaction advection sub-diffusion equation with finite-difference Fibonacci collocation method

Author

Listed:
  • Dwivedi, Kushal Dhar
  • Singh, Jagdev

Abstract

A new finite difference collocation algorithm has been introduced with the help of Fibonacci polynomial and then applied to one super and two sub-diffusion problems having an exact solution. It has also been shown that numerical error obtained with the investigated method is more accurate than previously existing methods. Fractional order reaction advection sub-diffusion equation containing Caputo and Riemann–Liouville fractional derivatives has been solved and the effects due to change in various parameters presented in the considered model with the graphical representation have been discussed.

Suggested Citation

  • Dwivedi, Kushal Dhar & Singh, Jagdev, 2021. "Numerical solution of two-dimensional fractional-order reaction advection sub-diffusion equation with finite-difference Fibonacci collocation method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 38-50.
  • Handle: RePEc:eee:matcom:v:181:y:2021:i:c:p:38-50
    DOI: 10.1016/j.matcom.2020.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420303165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Shaojie & He, Shaobo & Yousefpour, Amin & Jahanshahi, Hadi & Repnik, Robert & Perc, Matjaž, 2020. "Chaos and complexity in a fractional-order financial system with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    2. Hassani, Hossein & Avazzadeh, Zakieh, 2019. "Transcendental Bernstein series for solving nonlinear variable order fractional optimal control problems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    3. Ayşe Betül Koç & Musa Çakmak & Aydın Kurnaz, 2014. "A Matrix Method Based on the Fibonacci Polynomials to the Generalized Pantograph Equations with Functional Arguments," Advances in Mathematical Physics, Hindawi, vol. 2014, pages 1-5, August.
    4. Singh, Jagdev & Kumar, Devendra & Hammouch, Zakia & Atangana, Abdon, 2018. "A fractional epidemiological model for computer viruses pertaining to a new fractional derivative," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 504-515.
    5. Goswami, Amit & Singh, Jagdev & Kumar, Devendra & Sushila,, 2019. "An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 563-575.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. H. Mesgarani & M. Bakhshandeh & Y. Esmaeelzade Aghdam & J. F. Gómez-Aguilar, 2023. "The Convergence Analysis of the Numerical Calculation to Price the Time-Fractional Black–Scholes Model," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1845-1856, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prakash, Amit & Kaur, Hardish, 2021. "Analysis and numerical simulation of fractional Biswas–Milovic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 298-315.
    2. Jing Chang & Jin Zhang & Ming Cai, 2021. "Series Solutions of High-Dimensional Fractional Differential Equations," Mathematics, MDPI, vol. 9(17), pages 1-21, August.
    3. Saad, Khaled M. & Gómez-Aguilar, J.F. & Almadiy, Abdulrhman A., 2020. "A fractional numerical study on a chronic hepatitis C virus infection model with immune response," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Bhatter, Sanjay & Mathur, Amit & Kumar, Devendra & Singh, Jagdev, 2020. "A new analysis of fractional Drinfeld–Sokolov–Wilson model with exponential memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    5. Fawaz E. Alsaadi & Amirreza Yasami & Christos Volos & Stelios Bekiros & Hadi Jahanshahi, 2023. "A New Fuzzy Reinforcement Learning Method for Effective Chemotherapy," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
    6. Mehmood, Ammara & Raja, Muhammad Asif Zahoor & Ninness, Brett, 2024. "Design of fractional-order hammerstein control auto-regressive model for heat exchanger system identification: Treatise on fuzzy-evolutionary computing," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    7. Ravichandran, C. & Logeswari, K. & Panda, Sumati Kumari & Nisar, Kottakkaran Sooppy, 2020. "On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    8. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    9. Sunil Kumar & Ali Ahmadian & Ranbir Kumar & Devendra Kumar & Jagdev Singh & Dumitru Baleanu & Mehdi Salimi, 2020. "An Efficient Numerical Method for Fractional SIR Epidemic Model of Infectious Disease by Using Bernstein Wavelets," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    10. ur Rahman, Ghaus & Agarwal, Ravi P. & Din, Qamar, 2019. "Mathematical analysis of giving up smoking model via harmonic mean type incidence rate," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 128-148.
    11. Zhou, Shuang-Shuang & Jahanshahi, Hadi & Din, Qamar & Bekiros, Stelios & Alcaraz, Raúl & Alassafi, Madini O. & Alsaadi, Fawaz E. & Chu, Yu-Ming, 2021. "Discrete-time macroeconomic system: Bifurcation analysis and synchronization using fuzzy-based activation feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    12. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    13. Ghalib, M. Mansha & Zafar, Azhar A. & Riaz, M. Bilal & Hammouch, Z. & Shabbir, Khurram, 2020. "Analytical approach for the steady MHD conjugate viscous fluid flow in a porous medium with nonsingular fractional derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    14. Rahman, Mati ur & Arfan, Muhammad & Shah, Kamal & Gómez-Aguilar, J.F., 2020. "Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    15. Owolabi, Kolade M., 2018. "Numerical patterns in reaction–diffusion system with the Caputo and Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 160-169.
    16. Pho, Kim-Hung & Heydari, M.H. & Tuan, Bui Anh & Mahmoudi, Mohammad Reza, 2020. "Numerical study of nonlinear 2D optimal control problems with multi-term variable-order fractional derivatives in the Atangana-Baleanu-Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    17. Deniz, Sinan, 2021. "Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    18. Bambe Moutsinga, Claude Rodrigue & Pindza, Edson & Maré, Eben, 2021. "Comparative performance of time spectral methods for solving hyperchaotic finance and cryptocurrency systems," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    19. Hassouna, M. & Ouhadan, A. & El Kinani, E.H., 2018. "On the solution of fractional order SIS epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 168-174.
    20. Aliyu, Aliyu Isa & Inc, Mustafa & Yusuf, Abdullahi & Baleanu, Dumitru, 2018. "A fractional model of vertical transmission and cure of vector-borne diseases pertaining to the Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 268-277.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:181:y:2021:i:c:p:38-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.