IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v114y2018icp175-185.html
   My bibliography  Save this article

Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws

Author

Listed:
  • Solís-Pérez, J.E.
  • Gómez-Aguilar, J.F.
  • Atangana, A.

Abstract

Variable-order differential operators can be employed as a powerful tool to modeling nonlinear fractional differential equations and chaotical systems. In this paper, we propose a new generalize numerical schemes for simulating variable-order fractional differential operators with power-law, exponential-law and Mittag-Leffler kernel. The numerical schemes are based on the fundamental theorem of fractional calculus and the Lagrange polynomial interpolation. These schemes were applied to simulate the chaotic financial system and memcapacitor-based circuit chaotic oscillator. Numerical examples are presented to show the applicability and efficiency of this novel method.

Suggested Citation

  • Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
  • Handle: RePEc:eee:chsofr:v:114:y:2018:i:c:p:175-185
    DOI: 10.1016/j.chaos.2018.06.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918303503
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.06.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Jagdev & Kumar, Devendra & Baleanu, Dumitru & Rathore, Sushila, 2018. "An efficient numerical algorithm for the fractional Drinfeld–Sokolov–Wilson equation," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 12-24.
    2. Coronel-Escamilla, A. & Gómez-Aguilar, J.F. & Torres, L. & Escobar-Jiménez, R.F. & Valtierra-Rodríguez, M., 2017. "Synchronization of chaotic systems involving fractional operators of Liouville–Caputo type with variable-order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 1-21.
    3. Owolabi, Kolade M., 2017. "Mathematical modelling and analysis of two-component system with Caputo fractional derivative order," Chaos, Solitons & Fractals, Elsevier, vol. 103(C), pages 544-554.
    4. Galeone, Luciano & Garrappa, Roberto, 2008. "Fractional Adams–Moulton methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(4), pages 1358-1367.
    5. Singh, Jagdev & Kumar, Devendra & Hammouch, Zakia & Atangana, Abdon, 2018. "A fractional epidemiological model for computer viruses pertaining to a new fractional derivative," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 504-515.
    6. Kumar, Devendra & Singh, Jagdev & Baleanu, Dumitru & Sushila,, 2018. "Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 155-167.
    7. Sun, HongGuang & Chen, Wen & Li, Changpin & Chen, YangQuan, 2010. "Fractional differential models for anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2719-2724.
    8. Atangana, Abdon, 2018. "Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 688-706.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kachia, Krunal & Solís-Pérez, J.E. & Gómez-Aguilar, J.F., 2020. "Chaos in a three-cell population cancer model with variable-order fractional derivative with power, exponential and Mittag-Leffler memories," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Annamalai Meenakshi & Elango Renuga & Robert Čep & Krishnasamy Karthik, 2024. "Analysis of Caputo Fractional-Order Co-Infection COVID-19 and Influenza SEIR Epidemiology by Laplace Adomian Decomposition Method," Mathematics, MDPI, vol. 12(12), pages 1-18, June.
    3. Hasib Khan & Jehad Alzabut & Haseena Gulzar & Osman Tunç & Sandra Pinelas, 2023. "On System of Variable Order Nonlinear p-Laplacian Fractional Differential Equations with Biological Application," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    4. Yadav, Swati & Pandey, Rajesh K. & Shukla, Anil K., 2019. "Numerical approximations of Atangana–Baleanu Caputo derivative and its application," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 58-64.
    5. Yadav, Swati & Pandey, Rajesh K., 2020. "Numerical approximation of fractional burgers equation with Atangana–Baleanu derivative in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    6. Bukhari, Ayaz Hussain & Raja, Muhammad Asif Zahoor & Shoaib, Muhammad & Kiani, Adiqa Kausar, 2022. "Fractional order Lorenz based physics informed SARFIMA-NARX model to monitor and mitigate megacities air pollution," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    7. Heydari, M.H. & Atangana, A., 2019. "A cardinal approach for nonlinear variable-order time fractional Schrödinger equation defined by Atangana–Baleanu–Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 339-348.
    8. Zheng, Xiangcheng & Wang, Hong & Fu, Hongfei, 2020. "Well-posedness of fractional differential equations with variable-order Caputo-Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    9. Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
    10. Avcı, Derya & Yetim, Aylin, 2019. "Cauchy and source problems for an advection-diffusion equation with Atangana–Baleanu derivative on the real line," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 361-365.
    11. Ávalos-Ruiz, L.F. & Gómez-Aguilar, J.F. & Atangana, A. & Owolabi, Kolade M., 2019. "On the dynamics of fractional maps with power-law, exponential decay and Mittag–Leffler memory," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 364-388.
    12. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    13. Andrade, Dana I. & Specchia, Stefania & Fuziki, Maria E.K. & Oliveira, Jessica R.P. & Tusset, Angelo M. & Lenzi, Giane G., 2024. "Dynamic analysis and SDRE control applied in a mutating autocatalyst with chaotic behavior," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    14. Pho, Kim-Hung & Heydari, M.H. & Tuan, Bui Anh & Mahmoudi, Mohammad Reza, 2020. "Numerical study of nonlinear 2D optimal control problems with multi-term variable-order fractional derivatives in the Atangana-Baleanu-Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    15. Heydari, M. H. & Atangana, A., 2020. "An optimization method based on the generalized Lucas polynomials for variable-order space-time fractional mobile-immobile advection-dispersion equation involving derivatives with non-singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    16. Soradi-Zeid, Samaneh & Jahanshahi, Hadi & Yousefpour, Amin & Bekiros, Stelios, 2020. "King algorithm: A novel optimization approach based on variable-order fractional calculus with application in chaotic financial systems," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    17. Ghanbari, Behzad & Gómez-Aguilar, J.F., 2018. "Modeling the dynamics of nutrient–phytoplankton–zooplankton system with variable-order fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 114-120.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saad, Khaled M. & Srivastava, H.M. & Gómez-Aguilar, J.F., 2020. "A Fractional Quadratic autocatalysis associated with chemical clock reactions involving linear inhibition," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    2. Taneco-Hernández, M.A. & Morales-Delgado, V.F. & Gómez-Aguilar, J.F., 2019. "Fundamental solutions of the fractional Fresnel equation in the real half-line," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 807-827.
    3. Hashemi, M.S. & Inc, Mustafa & Yusuf, Abdullahi, 2020. "On three-dimensional variable order time fractional chaotic system with nonsingular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    4. Aliyu, Aliyu Isa & Inc, Mustafa & Yusuf, Abdullahi & Baleanu, Dumitru, 2018. "A fractional model of vertical transmission and cure of vector-borne diseases pertaining to the Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 268-277.
    5. Marasi, H.R. & Derakhshan, M.H., 2023. "Numerical simulation of time variable fractional order mobile–immobile advection–dispersion model based on an efficient hybrid numerical method with stability and convergence analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 368-389.
    6. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    7. Owolabi, Kolade M., 2019. "Mathematical modelling and analysis of love dynamics: A fractional approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 849-865.
    8. Saad, Khaled M. & Gómez-Aguilar, J.F. & Almadiy, Abdulrhman A., 2020. "A fractional numerical study on a chronic hepatitis C virus infection model with immune response," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Khan, Hasib & Gómez-Aguilar, J.F. & Khan, Aziz & Khan, Tahir Saeed, 2019. "Stability analysis for fractional order advection–reaction diffusion system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 737-751.
    10. Singh, Harendra & Srivastava, H.M., 2019. "Jacobi collocation method for the approximate solution of some fractional-order Riccati differential equations with variable coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1130-1149.
    11. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    12. Owolabi, Kolade M., 2018. "Numerical patterns in reaction–diffusion system with the Caputo and Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 160-169.
    13. Abdeljawad, Thabet & Atangana, Abdon & Gómez-Aguilar, J.F. & Jarad, Fahd, 2019. "On a more general fractional integration by parts formulae and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    14. Ávalos-Ruiz, L.F. & Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2018. "FPGA implementation and control of chaotic systems involving the variable-order fractional operator with Mittag–Leffler law," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 177-189.
    15. Prakash, Amit & Kaur, Hardish, 2021. "Analysis and numerical simulation of fractional Biswas–Milovic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 298-315.
    16. Singh, C.S. & Singh, Harendra & Singh, Somveer & Kumar, Devendra, 2019. "An efficient computational method for solving system of nonlinear generalized Abel integral equations arising in astrophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1440-1448.
    17. Saad, Khaled M. & Gómez-Aguilar, J.F., 2018. "Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 703-716.
    18. Bonyah, Ebenezer & Gómez-Aguilar, J.F. & Adu, Augustina, 2018. "Stability analysis and optimal control of a fractional human African trypanosomiasis model," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 150-160.
    19. Singh, Jagdev, 2020. "Analysis of fractional blood alcohol model with composite fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    20. Owolabi, Kolade M. & Hammouch, Zakia, 2019. "Spatiotemporal patterns in the Belousov–Zhabotinskii reaction systems with Atangana–Baleanu fractional order derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1072-1090.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:114:y:2018:i:c:p:175-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.