IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v316y2018icp504-515.html
   My bibliography  Save this article

A fractional epidemiological model for computer viruses pertaining to a new fractional derivative

Author

Listed:
  • Singh, Jagdev
  • Kumar, Devendra
  • Hammouch, Zakia
  • Atangana, Abdon

Abstract

In the computer security and for any defensive strategy, computer viruses are very significant aspect. To understand their expansion and extension is very important component. In order to deal with this issue, we consider a fractional epidemiological model. In this article, we analyze moderate epidemiological model to describe computer viruses with an arbitrary order derivative having non-singular kernel. We obtain the solution of the problem by using an iterative method. By using the fixed-point theorem the existence of the solution is discussed. The uniqueness of the solution is verified. We perform some numerical simulations and show graphically to observe the impact of the arbitrary order derivative.

Suggested Citation

  • Singh, Jagdev & Kumar, Devendra & Hammouch, Zakia & Atangana, Abdon, 2018. "A fractional epidemiological model for computer viruses pertaining to a new fractional derivative," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 504-515.
  • Handle: RePEc:eee:apmaco:v:316:y:2018:i:c:p:504-515
    DOI: 10.1016/j.amc.2017.08.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317305994
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.08.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wierman, John C. & Marchette, David J., 2004. "Modeling computer virus prevalence with a susceptible-infected-susceptible model with reintroduction," Computational Statistics & Data Analysis, Elsevier, vol. 45(1), pages 3-23, February.
    2. Alkahtani, Badr Saad T. & Atangana, Abdon, 2016. "Analysis of non-homogeneous heat model with new trend of derivative with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 566-571.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdel-Gawad, Hamdy I. & Baleanu, Dumitru & Abdel-Gawad, Ahmed H., 2021. "Unification of the different fractional time derivatives: An application to the epidemic-antivirus dynamical system in computer networks," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Yonghong Xu & Jianguo Ren, 2016. "Propagation Effect of a Virus Outbreak on a Network with Limited Anti-Virus Ability," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-15, October.
    3. McKinley, Trevelyan J. & Ross, Joshua V. & Deardon, Rob & Cook, Alex R., 2014. "Simulation-based Bayesian inference for epidemic models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 434-447.
    4. Zahra, Waheed K. & Abdel-Aty, Mahmoud & Abidou, Diaa, 2020. "A fractional model for estimating the hole geometry in the laser drilling process of thin metal sheets," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    5. Amador, Julia, 2014. "The stochastic SIRA model for computer viruses," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 1112-1124.
    6. J. Kayalvizhi & A. G. Vijaya Kumar & Hakan F. Öztop & Ndolane Sene & Nidal H. Abu-Hamdeh, 2022. "Heat Transfer Enhancement through Thermodynamical Activity of H 2 O/Clay Nanofluid Flow over an Infinite Upright Plate with Caputo Fractional-Order Derivative," Energies, MDPI, vol. 15(16), pages 1-18, August.
    7. Nazir, Aqsa & Ahmed, Naveed & Khan, Umar & Mohyud-din, Syed Tauseef, 2020. "On stability of improved conformable model for studying the dynamics of a malnutrition community," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    8. Uçar, Sümeyra & Uçar, Esmehan & Özdemir, Necati & Hammouch, Zakia, 2019. "Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 300-306.
    9. Hohle, Michael & Feldmann, Ulrike, 2007. "RLadyBug--An R package for stochastic epidemic models," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 680-686, October.
    10. Zhang, Chunming & Huang, Haitao, 2016. "Optimal control strategy for a novel computer virus propagation model on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 251-265.
    11. Yusuf, Abdullahi & Inc, Mustafa & Isa Aliyu, Aliyu & Baleanu, Dumitru, 2018. "Efficiency of the new fractional derivative with nonsingular Mittag-Leffler kernel to some nonlinear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 220-226.
    12. A.H. Nzokem, 2021. "SIS Epidemic Model Birth-and-Death Markov Chain Approach," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(4), pages 1-10, July.
    13. Tajadodi, H., 2020. "A Numerical approach of fractional advection-diffusion equation with Atangana–Baleanu derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    14. Bhatter, Sanjay & Mathur, Amit & Kumar, Devendra & Singh, Jagdev, 2020. "A new analysis of fractional Drinfeld–Sokolov–Wilson model with exponential memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    15. Inc, Mustafa & Yusuf, Abdullahi & Aliyu, Aliyu Isa & Baleanu, Dumitru, 2018. "Investigation of the logarithmic-KdV equation involving Mittag-Leffler type kernel with Atangana–Baleanu derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 520-531.
    16. Gao, Wei & Veeresha, P. & Prakasha, D.G. & Baskonus, Haci Mehmet & Yel, Gulnur, 2020. "New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    17. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2015. "Epidemic spreading on complex networks with overlapping and non-overlapping community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 171-182.
    18. Ren, Jianguo & Yang, Xiaofan & Yang, Lu-Xing & Xu, Yonghong & Yang, Fanzhou, 2012. "A delayed computer virus propagation model and its dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 45(1), pages 74-79.
    19. Tang, Yongchao & Zhang, Tie, 2019. "A remark on the q-fractional order differential equations," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 198-208.
    20. Abdulhameed, M. & Muhammad, M.M. & Gital, A.Y. & Yakubu, D.G. & Khan, I., 2019. "Effect of fractional derivatives on transient MHD flow and radiative heat transfer in a micro-parallel channel at high zeta potentials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 42-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:316:y:2018:i:c:p:504-515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.