IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v60y2012i3p517-528.html
   My bibliography  Save this article

A New Algorithm for the Open-Pit Mine Production Scheduling Problem

Author

Listed:
  • Renaud Chicoisne

    (Department of Industrial Engineering, Universidad de Chile, 8370439 Santiago, Chile)

  • Daniel Espinoza

    (Department of Industrial Engineering, Universidad de Chile, 8370439 Santiago, Chile)

  • Marcos Goycoolea

    (School of Business, Universidad Adolfo Ibañez, 7941169 Santiago, Chile)

  • Eduardo Moreno

    (Faculty of Engineering and Sciences, Universidad Adolfo Ibañez, 7941169 Santiago, Chile)

  • Enrique Rubio

    (Department of Mining Engineering and Advanced Mining Technology Center, Universidad de Chile, 8370439 Santiago, Chile)

Abstract

For the purpose of production scheduling, open-pit mines are discretized into three-dimensional arrays known as block models. Production scheduling consists of deciding which blocks should be extracted, when they should be extracted, and what to do with the blocks once they are extracted. Blocks that are close to the surface should be extracted first, and capacity constraints limit the production in each time period. Since the 1960s, it has been known that this problem can be cast as an integer programming model. However, the large size of some real instances (3--10 million blocks, 15--20 time periods) has made these models impractical for use in real planning applications, thus leading to the use of numerous heuristic methods. In this article we study a well-known integer programming formulation of the problem that we refer to as C-PIT. We propose a new decomposition method for solving the linear programming relaxation (LP) of C-PIT when there is a single capacity constraint per time period. This algorithm is based on exploiting the structure of the precedence-constrained knapsack problem and runs in O ( mn log n ) in which n is the number of blocks and m a function of the precedence relationships in the mine. Our computations show that we can solve, in minutes, the LP relaxation of real-sized mine-planning applications with up to five million blocks and 20 time periods. Combining this with a quick rounding algorithm based on topological sorting, we obtain integer feasible solutions to the more general problem where multiple capacity constraints per time period are considered. Our implementation obtains solutions within 6% of optimality in seconds. A second heuristic step, based on local search, allows us to find solutions within 3% in one hour on all instances considered. For most instances, we obtain solutions within 1--2% of optimality if we let this heuristic run longer. Previous methods have been able to tackle only instances with up to 150,000 blocks and 15 time periods.

Suggested Citation

  • Renaud Chicoisne & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Enrique Rubio, 2012. "A New Algorithm for the Open-Pit Mine Production Scheduling Problem," Operations Research, INFORMS, vol. 60(3), pages 517-528, June.
  • Handle: RePEc:inm:oropre:v:60:y:2012:i:3:p:517-528
    DOI: 10.1287/opre.1120.1050
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1120.1050
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1120.1050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dorit S. Hochbaum, 2008. "The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem," Operations Research, INFORMS, vol. 56(4), pages 992-1009, August.
    2. Alexandra M. Newman & Enrique Rubio & Rodrigo Caro & Andrés Weintraub & Kelly Eurek, 2010. "A Review of Operations Research in Mine Planning," Interfaces, INFORMS, vol. 40(3), pages 222-245, June.
    3. Dorit S. Hochbaum & Anna Chen, 2000. "Performance Analysis and Best Implementations of Old and New Algorithms for the Open-Pit Mining Problem," Operations Research, INFORMS, vol. 48(6), pages 894-914, December.
    4. Bala G. Chandran & Dorit S. Hochbaum, 2009. "A Computational Study of the Pseudoflow and Push-Relabel Algorithms for the Maximum Flow Problem," Operations Research, INFORMS, vol. 57(2), pages 358-376, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nancel-Penard, Pierre & Morales, Nelson & Cornillier, Fabien, 2022. "A recursive time aggregation-disaggregation heuristic for the multidimensional and multiperiod precedence-constrained knapsack problem: An application to the open-pit mine block sequencing problem," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1088-1099.
    2. Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Alexandra Newman, 2013. "MineLib: a library of open pit mining problems," Annals of Operations Research, Springer, vol. 206(1), pages 93-114, July.
    3. Rafael Epstein & Marcel Goic & Andrés Weintraub & Jaime Catalán & Pablo Santibáñez & Rodolfo Urrutia & Raúl Cancino & Sergio Gaete & Augusto Aguayo & Felipe Caro, 2012. "Optimizing Long-Term Production Plans in Underground and Open-Pit Copper Mines," Operations Research, INFORMS, vol. 60(1), pages 4-17, February.
    4. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    5. Enrique Jelvez & Nelson Morales & Julian M. Ortiz, 2021. "Stochastic Final Pit Limits: An Efficient Frontier Analysis under Geological Uncertainty in the Open-Pit Mining Industry," Mathematics, MDPI, vol. 10(1), pages 1-16, December.
    6. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Peypouquet, Juan & Reyes, Patricio, 2016. "Aggregation heuristic for the open-pit block scheduling problem," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1169-1177.
    7. Kwame Awuah-Offei & Sisi Que & Atta Ur Rehman, 2021. "Evaluating Mine Design Alternatives for Social Risks Using Discrete Choice Analysis," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    8. Gonzalo Muñoz & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Maurice Queyranne & Orlando Rivera Letelier, 2018. "A study of the Bienstock–Zuckerberg algorithm: applications in mining and resource constrained project scheduling," Computational Optimization and Applications, Springer, vol. 69(2), pages 501-534, March.
    9. W. Lambert & A. Newman, 2014. "Tailored Lagrangian Relaxation for the open pit block sequencing problem," Annals of Operations Research, Springer, vol. 222(1), pages 419-438, November.
    10. Madziwa, Lawrence & Pillalamarry, Mallikarjun & Chatterjee, Snehamoy, 2023. "Integrating stochastic mine planning model with ARDL commodity price forecasting," Resources Policy, Elsevier, vol. 85(PB).
    11. Li, Xiangyong & Aneja, Y.P., 2017. "Regenerator location problem: Polyhedral study and effective branch-and-cut algorithms," European Journal of Operational Research, Elsevier, vol. 257(1), pages 25-40.
    12. Zhang, Jian & Nault, Barrie R. & Dimitrakopoulos, Roussos G., 2019. "Optimizing a mineral value chain with market uncertainty using benders decomposition," European Journal of Operational Research, Elsevier, vol. 274(1), pages 227-239.
    13. Lin, Jingsi & Asad, Mohammad Waqar Ali & Topal, Erkan & Chang, Ping & Huang, Jinxin & Lin, Wei, 2024. "A novel model for sustainable production scheduling of an open-pit mining complex considering waste encapsulation," Resources Policy, Elsevier, vol. 91(C).
    14. Camargo, Luis Felipe Riehs & Rodrigues, Luis Henrique & Lacerda, Daniel Pacheco & Piran, Fabio Sartori, 2018. "A method for integrated process simulation in the mining industry," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1116-1129.
    15. Zhang, Jian & Dimitrakopoulos, Roussos G., 2017. "A dynamic-material-value-based decomposition method for optimizing a mineral value chain with uncertainty," European Journal of Operational Research, Elsevier, vol. 258(2), pages 617-625.
    16. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan & Asad, Mohammad Waqar Ali, 2020. "Simultaneous stochastic optimization of production sequence and dynamic cut-off grades in an open pit mining operation," Resources Policy, Elsevier, vol. 66(C).
    17. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan, 2021. "Open-pit mining complex optimization under uncertainty with integrated cut-off grade based destination policies," Resources Policy, Elsevier, vol. 70(C).
    18. Alessandro Hill & Andrea J. Brickey & Italo Cipriano & Marcos Goycoolea & Alexandra Newman, 2022. "Optimization Strategies for Resource-Constrained Project Scheduling Problems in Underground Mining," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3042-3058, November.
    19. Chatterjee, Snehamoy & Sethi, Manas Ranjan & Asad, Mohammad Waqar Ali, 2016. "Production phase and ultimate pit limit design under commodity price uncertainty," European Journal of Operational Research, Elsevier, vol. 248(2), pages 658-667.
    20. Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo & Newman, Alexandra, 2024. "A target-time-windows technique for project scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 314(2), pages 792-806.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:60:y:2012:i:3:p:517-528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.