IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v91y2024ics0301420724002010.html
   My bibliography  Save this article

Concurrent optimisation of open pit ore and waste movement with optimal haul road selection

Author

Listed:
  • Das, Ranajit
  • Topal, Erkan
  • Mardaneh, Elham

Abstract

Optimal open pit ore and waste scheduling with a network of haulage options create a large combinatorial problem. In this paper, a mathematical model has been proposed to simultaneously optimise pit and waste dump schedules with the shortest haulage selection from possible haul-road networks. The model also determines the optimal quantity of material to be sent through the shortest haulage path for all combinations of sources and destinations. This is a new approach of simultaneous optimisation as earlier studies had optimized pit, dumps and haulage separately missing their combined impact on optimality. The new model has been implemented on several case studies detailed in the paper. A comparison has been performed for a case study which revealed that 39% savings in haulage distances and 44% savings on backfilling to in-pit dumps over a schedule using a mine planning software. Furthermore, different case studies have been solved using an exact as well as a meta-heuristic method developed for the purpose and the results of both methods match within close limits and whereas the meta-heuristics showed a considerable improvement in solution time as data size increased.

Suggested Citation

  • Das, Ranajit & Topal, Erkan & Mardaneh, Elham, 2024. "Concurrent optimisation of open pit ore and waste movement with optimal haul road selection," Resources Policy, Elsevier, vol. 91(C).
  • Handle: RePEc:eee:jrpoli:v:91:y:2024:i:c:s0301420724002010
    DOI: 10.1016/j.resourpol.2024.104834
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420724002010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2024.104834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Das, Ranajit & Topal, Erkan & Mardaneh, Elham, 2023. "A review of open pit mine and waste dump schedule planning," Resources Policy, Elsevier, vol. 85(PA).
    2. Del Castillo, M. Fernanda & Dimitrakopoulos, Roussos, 2019. "Dynamically optimizing the strategic plan of mining complexes under supply uncertainty," Resources Policy, Elsevier, vol. 60(C), pages 83-93.
    3. Groeneveld, Benjamin & Topal, Erkan & Leenders, Bob, 2019. "Examining system configuration in an open pit mine design," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    4. Renaud Chicoisne & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Enrique Rubio, 2012. "A New Algorithm for the Open-Pit Mine Production Scheduling Problem," Operations Research, INFORMS, vol. 60(3), pages 517-528, June.
    5. Danish, Abid Ali Khan & Khan, Asif & Muhammad, Khan & Ahmad, Waqas & Salman, Saad, 2021. "A simulated annealing based approach for open pit mine production scheduling with stockpiling option," Resources Policy, Elsevier, vol. 71(C).
    6. M Kumral & P A Dowd, 2005. "A simulated annealing approach to mine production scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 922-930, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Jingsi & Asad, Mohammad Waqar Ali & Topal, Erkan & Chang, Ping & Huang, Jinxin & Lin, Wei, 2024. "A novel model for sustainable production scheduling of an open-pit mining complex considering waste encapsulation," Resources Policy, Elsevier, vol. 91(C).
    2. Noriega, Roberto & Pourrahimian, Yashar, 2022. "A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning," Resources Policy, Elsevier, vol. 77(C).
    3. Danish, Abid Ali Khan & Khan, Asif & Muhammad, Khan & Ahmad, Waqas & Salman, Saad, 2021. "A simulated annealing based approach for open pit mine production scheduling with stockpiling option," Resources Policy, Elsevier, vol. 71(C).
    4. Shishvan, Masoud Soleymani & Sattarvand, Javad, 2015. "Long term production planning of open pit mines by ant colony optimization," European Journal of Operational Research, Elsevier, vol. 240(3), pages 825-836.
    5. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    6. El Mehdi, Er Raqabi & Ilyas, Himmich & Nizar, El Hachemi & Issmaïl, El Hallaoui & François, Soumis, 2023. "Incremental LNS framework for integrated production, inventory, and vessel scheduling: Application to a global supply chain," Omega, Elsevier, vol. 116(C).
    7. Rafael Epstein & Marcel Goic & Andrés Weintraub & Jaime Catalán & Pablo Santibáñez & Rodolfo Urrutia & Raúl Cancino & Sergio Gaete & Augusto Aguayo & Felipe Caro, 2012. "Optimizing Long-Term Production Plans in Underground and Open-Pit Copper Mines," Operations Research, INFORMS, vol. 60(1), pages 4-17, February.
    8. J Jackman & Z Guerra de Castillo & S Olafsson, 2011. "Stochastic flow shop scheduling model for the Panama Canal," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 69-80, January.
    9. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    10. Biswas, Pritam & Sinha, Rabindra Kumar & Sen, Phalguni, 2023. "A review of state-of-the-art techniques for the determination of the optimum cut-off grade of a metalliferous deposit with a bibliometric mapping in a surface mine planning context," Resources Policy, Elsevier, vol. 83(C).
    11. Changyou Xu & Gang Chen & Huabo Lu & Qiuxia Zhang & Zhengke Liu & Jing Bian, 2024. "Integrated Optimization of Production Scheduling and Haulage Route Planning in Open-Pit Mines," Mathematics, MDPI, vol. 12(13), pages 1-24, July.
    12. King, Barry & Goycoolea, Marcos & Newman, A., 2017. "Optimizing the open pit-to-underground mining transition," European Journal of Operational Research, Elsevier, vol. 257(1), pages 297-309.
    13. César Flores-Fonseca & Rodrigo Linfati & John Willmer Escobar, 2022. "Exact algorithms for production planning in mining considering the use of stockpiles and sequencing of power shovels in open-pit mines," Operational Research, Springer, vol. 22(3), pages 2529-2553, July.
    14. Christina N. Burt & Lou Caccetta, 2014. "Equipment Selection for Surface Mining: A Review," Interfaces, INFORMS, vol. 44(2), pages 143-162, April.
    15. W. Brian Lambert & Andrea Brickey & Alexandra M. Newman & Kelly Eurek, 2014. "Open-Pit Block-Sequencing Formulations: A Tutorial," Interfaces, INFORMS, vol. 44(2), pages 127-142, April.
    16. Lu Chen & Qinghua Gu & Rui Wang & Zhidong Feng & Chao Zhang, 2022. "Comprehensive Utilization of Mineral Resources: Optimal Blending of Polymetallic Ore Using an Improved NSGA-III Algorithm," Sustainability, MDPI, vol. 14(17), pages 1-19, August.
    17. Yıldız, Taşkın Deniz, 2022. "Considering the recent increase in license fees in Turkey, how can the negative effect of the fees on the mining operating costs be reduced?," Resources Policy, Elsevier, vol. 77(C).
    18. Yıldız, Taşkın Deniz & Güner, Mehmet Oğuz & Kural, Orhan, 2024. "Effects of EU-Compliant mining waste regulation on Turkish mining sector: A review of characterization, classification, storage, management, recovery of mineral wastes," Resources Policy, Elsevier, vol. 90(C).
    19. Nancel-Penard, Pierre & Morales, Nelson & Cornillier, Fabien, 2022. "A recursive time aggregation-disaggregation heuristic for the multidimensional and multiperiod precedence-constrained knapsack problem: An application to the open-pit mine block sequencing problem," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1088-1099.
    20. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Peypouquet, Juan & Reyes, Patricio, 2016. "Aggregation heuristic for the open-pit block scheduling problem," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1169-1177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:91:y:2024:i:c:s0301420724002010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.