IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v90y2024ics0301420724000904.html
   My bibliography  Save this article

Development of wind energy and access to REE. The case of Poland

Author

Listed:
  • Rybak, Aurelia
  • Rybak, Aleksandra
  • Kolev, Spas D.

Abstract

The article presents the results of research on the dependence of the electricity production capacities for wind energy on access to REE on the example of Poland. For the purposes of the research, the authors wrote a program called WE ARE Energy 1.0. The program contains classes that allow for a comprehensive analysis of the problem under study. Based on the data provided, it first optimizes the parameters of the forecasting model. Forecasts on production capacities for wind energy in Poland and two scenarios of this phenomenon development in a selected time horizon are generated. The program determines REE such as Nd, Dy, Pr, Tb demand scenarios based on electricity production capacities for wind energy. The potential of REE resources available on a global scale was also verified. Since it was established that these resources will be exhausted, an alternative source of acquisition was proposed, which is fly ash generated during the combustion of Polish coal. In each of the REE demand scenarios, the program determines the ratio of covering the demand for REE with elements recovered from the ashes. It was noticed that in most scenarios, this ratio takes a value greater than 100 %. The presented program allows conducting analogous analyses for each selected case, e.g. other EU member states.

Suggested Citation

  • Rybak, Aurelia & Rybak, Aleksandra & Kolev, Spas D., 2024. "Development of wind energy and access to REE. The case of Poland," Resources Policy, Elsevier, vol. 90(C).
  • Handle: RePEc:eee:jrpoli:v:90:y:2024:i:c:s0301420724000904
    DOI: 10.1016/j.resourpol.2024.104723
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420724000904
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2024.104723?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van de Kaa, Geerten & van Ek, Martijn & Kamp, Linda M. & Rezaei, Jafar, 2020. "Wind turbine technology battles: Gearbox versus direct drive - opening up the black box of technology characteristics," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    2. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Examining the social acceptance of wind energy: Practical guidelines for onshore wind project development in France," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 178-184.
    3. Almorox, J. & Benito, M. & Hontoria, C., 2005. "Estimation of monthly Angström–Prescott equation coefficients from measured daily data in Toledo, Spain," Renewable Energy, Elsevier, vol. 30(6), pages 931-936.
    4. Reiche, Danyel & Bechberger, Mischa, 2004. "Policy differences in the promotion of renewable energies in the EU member states," Energy Policy, Elsevier, vol. 32(7), pages 843-849, May.
    5. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    6. Leite, Gustavo de Novaes Pires & Araújo, Alex Maurício & Rosas, Pedro André Carvalho, 2018. "Prognostic techniques applied to maintenance of wind turbines: a concise and specific review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1917-1925.
    7. Safi, S. & Zeroual, A. & Hassani, M., 2002. "Prediction of global daily solar radiation using higher order statistics," Renewable Energy, Elsevier, vol. 27(4), pages 647-666.
    8. Petre Prisecaru, 2022. "The War in Ukraine and the Overhaul of EU Energy Security," Global Economic Observer, "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences;Institute for World Economy of the Romanian Academy, vol. 10(1), pages 16-25, June.
    9. Renata Marks-Bielska & Stanisław Bielski & Katarzyna Pik & Krystyna Kurowska, 2020. "The Importance of Renewable Energy Sources in Poland’s Energy Mix," Energies, MDPI, vol. 13(18), pages 1-23, September.
    10. Chen, Shengming & Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2023. "The Russia–Ukraine war and energy market volatility: A novel application of the volatility ratio in the context of natural gas," Resources Policy, Elsevier, vol. 85(PA).
    11. Elshkaki, Ayman & Graedel, T.E., 2014. "Dysprosium, the balance problem, and wind power technology," Applied Energy, Elsevier, vol. 136(C), pages 548-559.
    12. Esteban, M. Dolores & Diez, J. Javier & López, Jose S. & Negro, Vicente, 2011. "Why offshore wind energy?," Renewable Energy, Elsevier, vol. 36(2), pages 444-450.
    13. Pavel, Claudiu C. & Lacal-Arántegui, Roberto & Marmier, Alain & Schüler, Doris & Tzimas, Evangelos & Buchert, Matthias & Jenseit, Wolfgang & Blagoeva, Darina, 2017. "Substitution strategies for reducing the use of rare earths in wind turbines," Resources Policy, Elsevier, vol. 52(C), pages 349-357.
    14. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
    15. Enevoldsen, Peter & Valentine, Scott Victor & Sovacool, Benjamin K., 2018. "Insights into wind sites: Critically assessing the innovation, cost, and performance dynamics of global wind energy development," Energy Policy, Elsevier, vol. 120(C), pages 1-7.
    16. Enevoldsen, Peter & Permien, Finn-Hendrik & Bakhtaoui, Ines & Krauland, Anna-Katharina von & Jacobson, Mark Z. & Xydis, George & Sovacool, Benjamin K. & Valentine, Scott V. & Luecht, Daniel & Oxley, G, 2019. "How much wind power potential does europe have? Examining european wind power potential with an enhanced socio-technical atlas," Energy Policy, Elsevier, vol. 132(C), pages 1092-1100.
    17. Rabe, Wiebke & Kostka, Genia & Smith Stegen, Karen, 2017. "China's supply of critical raw materials: Risks for Europe's solar and wind industries?," Energy Policy, Elsevier, vol. 101(C), pages 692-699.
    18. Imholte, D.D. & Nguyen, R.T. & Vedantam, A. & Brown, M. & Iyer, A. & Smith, B.J. & Collins, J.W. & Anderson, C.G. & O’Kelley, B., 2018. "An assessment of U.S. rare earth availability for supporting U.S. wind energy growth targets," Energy Policy, Elsevier, vol. 113(C), pages 294-305.
    19. Hevia-Koch, Pablo & Klinge Jacobsen, Henrik, 2019. "Comparing offshore and onshore wind development considering acceptance costs," Energy Policy, Elsevier, vol. 125(C), pages 9-19.
    20. Nassar, Nedal T. & Wilburn, David R. & Goonan, Thomas G., 2016. "Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios," Applied Energy, Elsevier, vol. 183(C), pages 1209-1226.
    21. Bilgili, Mehmet & Yasar, Abdulkadir & Simsek, Erdogan, 2011. "Offshore wind power development in Europe and its comparison with onshore counterpart," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 905-915, February.
    22. García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
    23. Liu, W.Y. & Tang, B.P. & Han, J.G. & Lu, X.N. & Hu, N.N. & He, Z.Z., 2015. "The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 466-472.
    24. Jung, Christopher & Schindler, Dirk, 2022. "On the influence of wind speed model resolution on the global technical wind energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Mei-Jing & Huang, Jian-Bai & Chen, Jin-Yu, 2022. "Time and frequency spillovers between political risk and the stock returns of China's rare earths," Resources Policy, Elsevier, vol. 75(C).
    2. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    3. Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.
    4. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    5. Masoud Asgarpour & John Dalsgaard Sørensen, 2018. "Bayesian Based Diagnostic Model for Condition Based Maintenance of Offshore Wind Farms," Energies, MDPI, vol. 11(2), pages 1-17, January.
    6. Yang, Xiyun & Zhang, Yanfeng & Lv, Wei & Wang, Dong, 2021. "Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier," Renewable Energy, Elsevier, vol. 163(C), pages 386-397.
    7. Lüth, Alexandra & Keles, Dogan, 2024. "Risks, strategies, and benefits of offshore energy hubs: A literature-based survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    8. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Pliego Marugán, Alberto & Peco Chacón, Ana María & García Márquez, Fausto Pedro, 2019. "Reliability analysis of detecting false alarms that employ neural networks: A real case study on wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    10. Liu, Y. & Hajj, M. & Bao, Y., 2022. "Review of robot-based damage assessment for offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Giovanni Rinaldi & Philipp R. Thies & Lars Johanning, 2021. "Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    12. Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
    13. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    14. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    15. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    16. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    17. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    19. Noel, William & Weis, Timothy M. & Yu, Qiulin & Leach, Andrew & Fleck, Brian A., 2022. "Mapping the evolution of Canada’s wind energy fleet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    20. Moynihan, Bridget & Moaveni, Babak & Liberatore, Sauro & Hines, Eric, 2022. "Estimation of blade forces in wind turbines using blade root strain measurements with OpenFAST verification," Renewable Energy, Elsevier, vol. 184(C), pages 662-676.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:90:y:2024:i:c:s0301420724000904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.