IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v167y2022ics1364032122005792.html
   My bibliography  Save this article

Mapping the evolution of Canada’s wind energy fleet

Author

Listed:
  • Noel, William
  • Weis, Timothy M.
  • Yu, Qiulin
  • Leach, Andrew
  • Fleck, Brian A.

Abstract

This paper describes the development of a data set mapping all commercial wind turbines in Canada: the 9th largest onshore wind energy fleet in the world. Details contained in the data enable the analysis of the evolution of commercially deployed wind turbines as well as the illustrating the effects of the introduction and cessation of different policies affected historical deployment. In total, over 6700 turbines spanning more than 265 projects and nearly 14.0 GW of generating capacity were indexed including coordinates, model, manufacturer, owner, tower height and commissioning date. Data were compiled from publicly available sources including planning documents, technical reports, environmental impact studies and acoustic emission reports. In 2021, average rotor diameters were 140 m with 108 m tall towers, more than triple the average diameter and double the average tower height from 20 years ago. The analysis of this data found that a typical wind farm in Canada consists of 0.97 turbines/km2, while the typical installed capacity density has recently jumped from around 1 to 2.94 MW/km2 in 2021. Competitive procurement policies have often trended towards larger installed capacities, whereas smaller wind farms emerged more often when policies directed at community ownership were in place. Policies that encouraged local manufacturing developed regional clusters of particular manufacturers, but generally ceased after the local manufacturing policies ended. This work serves as a benchmark for the evolution of wind energy in Canada and a framework for similar data sets in other jurisdictions, and provides a resource for academic researchers, wind farm developers, government bodies and planning agencies as well as the general public.

Suggested Citation

  • Noel, William & Weis, Timothy M. & Yu, Qiulin & Leach, Andrew & Fleck, Brian A., 2022. "Mapping the evolution of Canada’s wind energy fleet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:rensus:v:167:y:2022:i:c:s1364032122005792
    DOI: 10.1016/j.rser.2022.112690
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122005792
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112690?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. May, R. & Reitan, O. & Bevanger, K. & Lorentsen, S.-H. & Nygård, T., 2015. "Mitigating wind-turbine induced avian mortality: Sensory, aerodynamic and cognitive constraints and options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 170-181.
    2. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Examining the social acceptance of wind energy: Practical guidelines for onshore wind project development in France," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 178-184.
    3. Enevoldsen, Peter & Permien, Finn-Hendrik & Bakhtaoui, Ines & Krauland, Anna-Katharina von & Jacobson, Mark Z. & Xydis, George & Sovacool, Benjamin K. & Valentine, Scott V. & Luecht, Daniel & Oxley, G, 2019. "How much wind power potential does europe have? Examining european wind power potential with an enhanced socio-technical atlas," Energy Policy, Elsevier, vol. 132(C), pages 1092-1100.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rybak, Aurelia & Rybak, Aleksandra & Kolev, Spas D., 2024. "Development of wind energy and access to REE. The case of Poland," Resources Policy, Elsevier, vol. 90(C).
    2. Merethe Dotterud Leiren & Stine Aakre & Kristin Linnerud & Tom Erik Julsrud & Maria-Rosaria Di Nucci & Michael Krug, 2020. "Community Acceptance of Wind Energy Developments: Experience from Wind Energy Scarce Regions in Europe," Sustainability, MDPI, vol. 12(5), pages 1-22, February.
    3. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
    4. Bourcet, Clémence & Bovari, Emmanuel, 2020. "Exploring citizens' decision to crowdfund renewable energy projects: Quantitative evidence from France," Energy Economics, Elsevier, vol. 88(C).
    5. Hosseini, S. Rasoul & Ganji, Davoud Domiri, 2020. "A novel design of nozzle-diffuser to enhance performance of INVELOX wind turbine," Energy, Elsevier, vol. 198(C).
    6. Xiaohang Ren & Cheng Cheng & Zhen Wang & Cheng Yan, 2021. "Spillover and dynamic effects of energy transition and economic growth on carbon dioxide emissions for the European Union: A dynamic spatial panel model," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 228-242, January.
    7. Mouter, Niek & de Geest, Auke & Doorn, Neelke, 2018. "A values-based approach to energy controversies: Value-sensitive design applied to the Groningen gas controversy in the Netherlands," Energy Policy, Elsevier, vol. 122(C), pages 639-648.
    8. Shirizadeh, Behrang & Quirion, Philippe, 2021. "Low-carbon options for the French power sector: What role for renewables, nuclear energy and carbon capture and storage?," Energy Economics, Elsevier, vol. 95(C).
    9. Enevoldsen, Peter & Valentine, Scott Victor & Sovacool, Benjamin K., 2018. "Insights into wind sites: Critically assessing the innovation, cost, and performance dynamics of global wind energy development," Energy Policy, Elsevier, vol. 120(C), pages 1-7.
    10. A. G. Olabi & Khaled Obaideen & Mohammad Ali Abdelkareem & Maryam Nooman AlMallahi & Nabila Shehata & Abdul Hai Alami & Ayman Mdallal & Asma Ali Murah Hassan & Enas Taha Sayed, 2023. "Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    11. Frank Hanssen & Roel May & Jiska van Dijk & Jan Ketil Rød, 2018. "Spatial Multi-Criteria Decision Analysis Tool Suite for Consensus-Based Siting of Renewable Energy Structures," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-28, September.
    12. Cousse, Julia, 2021. "Still in love with solar energy? Installation size, affect, and the social acceptance of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    14. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Balezentis, Tomas & Streimikiene, Dalia & Mikalauskas, Ignas & Shen, Zhiyang, 2021. "Towards carbon free economy and electricity: The puzzle of energy costs, sustainability and security based on willingness to pay," Energy, Elsevier, vol. 214(C).
    16. Joalland, Olivier & Mahieu, Pierre-Alexandre, 2023. "Developing large-scale offshore wind power programs: A choice experiment analysis in France," Ecological Economics, Elsevier, vol. 204(PA).
    17. Suškevičs, M. & Eiter, S. & Martinat, S. & Stober, D. & Vollmer, E. & de Boer, C.L. & Buchecker, M., 2019. "Regional variation in public acceptance of wind energy development in Europe: What are the roles of planning procedures and participation?," Land Use Policy, Elsevier, vol. 81(C), pages 311-323.
    18. Enevoldsen, Peter, 2016. "Onshore wind energy in Northern European forests: Reviewing the risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1251-1262.
    19. Jens Lüdeke, 2017. "Offshore Wind Energy: Good Practice in Impact Assessment, Mitigation and Compensation," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-31, March.
    20. Tosatto, Andrea & Beseler, Xavier Martínez & Østergaard, Jacob & Pinson, Pierre & Chatzivasileiadis, Spyros, 2022. "North Sea Energy Islands: Impact on national markets and grids," Energy Policy, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:167:y:2022:i:c:s1364032122005792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.