IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v129y2024ics014098832300751x.html
   My bibliography  Save this article

Energy price bubbles and extreme price movements: Evidence from China's coal market

Author

Listed:
  • Wang, Tiantian
  • Wu, Fei
  • Dickinson, David
  • Zhao, Wanli

Abstract

This study investigates the factors behind the extreme price movements in China's coal market, with a particular focus on the impact of climate risk and energy transition in recent years. The Generalized Sup Augmented Dickey-Fuller (GSADF) method is employed to detect coal price bubbles, and a dynamic model averaging (DMA) approach is then used to analyze the causes of these price bubbles. The findings reveal that price bubbles in the Chinese coal market are mainly triggered by fluctuations in international energy prices. The extreme prices are rooted in supply-demand imbalances resulting from energy transition, economic development, and geopolitical conflicts. Policies aimed at adjusting coal supplies can effectively mitigate abnormal coal price fluctuations in China, while normal coal price fluctuations are significantly influenced by changes in energy demand driven by macroeconomic development. During the green transition towards renewable energy, the current high prices of fossil energy present challenges to China's energy supply security but also offer opportunities for the development of the renewable energy market. However, energy transition has facilitated the spread of price bubbles across coal, natural gas, and renewable energy markets, potentially leading to contagion effects.

Suggested Citation

  • Wang, Tiantian & Wu, Fei & Dickinson, David & Zhao, Wanli, 2024. "Energy price bubbles and extreme price movements: Evidence from China's coal market," Energy Economics, Elsevier, vol. 129(C).
  • Handle: RePEc:eee:eneeco:v:129:y:2024:i:c:s014098832300751x
    DOI: 10.1016/j.eneco.2023.107253
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098832300751X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.107253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Y.X. & Zhang, S.L. & Yang, L.Y. & Wang, Y.J. & Wang, J., 2010. "Economic analysis of coal price-electricity price adjustment in China based on the CGE model," Energy Policy, Elsevier, vol. 38(11), pages 6629-6637, November.
    2. Joëts, Marc & Mignon, Valérie, 2012. "On the link between forward energy prices: A nonlinear panel cointegration approach," Energy Economics, Elsevier, vol. 34(4), pages 1170-1175.
    3. Ye Xue & Yiting Huang, 2017. "Study on the price co-movement among the Asia Pacific, European and Chinese coal markets – based on the empirical analysis of MS-VEC model," Applied Economics, Taylor & Francis Journals, vol. 49(7), pages 693-701, February.
    4. Yuan, Jiahai & Li, Peng & Wang, Yang & Liu, Qian & Shen, Xinyi & Zhang, Kai & Dong, Liansai, 2016. "Coal power overcapacity and investment bubble in China during 2015–2020," Energy Policy, Elsevier, vol. 97(C), pages 136-144.
    5. Ferrari, Davide & Ravazzolo, Francesco & Vespignani, Joaquin, 2021. "Forecasting energy commodity prices: A large global dataset sparse approach," Energy Economics, Elsevier, vol. 98(C).
    6. Cheima Gharib & Salma Mefteh-Wali & Vanessa Serret & Sami Ben Jabeur, 2021. "Impact of COVID-19 pandemic on crude oil prices: Evidence from Econophysics approach," Post-Print hal-03375164, HAL.
    7. Lin, Boqiang & Chen, Yufang, 2019. "Dynamic linkages and spillover effects between CET market, coal market and stock market of new energy companies: A case of Beijing CET market in China," Energy, Elsevier, vol. 172(C), pages 1198-1210.
    8. Peter C. B. Phillips & Jun Yu, 2011. "Dating the timeline of financial bubbles during the subprime crisis," Quantitative Economics, Econometric Society, vol. 2(3), pages 455-491, November.
    9. Chen, Zhan-Ming, 2014. "Inflationary effect of coal price change on the Chinese economy," Applied Energy, Elsevier, vol. 114(C), pages 301-309.
    10. Li, Yan & Chevallier, Julien & Wei, Yigang & Li, Jing, 2020. "Identifying price bubbles in the US, European and Asian natural gas market: Evidence from a GSADF test approach," Energy Economics, Elsevier, vol. 87(C).
    11. Su, Chi Wei & Qin, Meng & Chang, Hsu-Ling & Țăran, Alexandra-Mădălina, 2023. "Which risks drive European natural gas bubbles? Novel evidence from geopolitics and climate," Resources Policy, Elsevier, vol. 81(C).
    12. Zhang, Dayong & Wang, Tiantian & Shi, Xunpeng & Liu, Jia, 2018. "Is hub-based pricing a better choice than oil indexation for natural gas? Evidence from a multiple bubble test," Energy Economics, Elsevier, vol. 76(C), pages 495-503.
    13. Drachal, Krzysztof, 2016. "Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?," Energy Economics, Elsevier, vol. 60(C), pages 35-46.
    14. Li, Jianglong & Xie, Chunping & Long, Houyin, 2019. "The roles of inter-fuel substitution and inter-market contagion in driving energy prices: evidences from China’s coal market," LSE Research Online Documents on Economics 102540, London School of Economics and Political Science, LSE Library.
    15. Fantazzini, Dean, 2016. "The oil price crash in 2014/15: Was there a (negative) financial bubble?," Energy Policy, Elsevier, vol. 96(C), pages 383-396.
    16. Fan, Xinghua & Wang, Li & Li, Shasha, 2016. "Predicting chaotic coal prices using a multi-layer perceptron network model," Resources Policy, Elsevier, vol. 50(C), pages 86-92.
    17. Wang, Xiaofei & Liu, Chuangeng & Chen, Shaojie & Chen, Lei & Li, Ke & Liu, Na, 2020. "Impact of coal sector’s de-capacity policy on coal price," Applied Energy, Elsevier, vol. 265(C).
    18. Ma, Yiqun & Wang, Junhao, 2019. "Co-movement between oil, gas, coal, and iron ore prices, the Australian dollar, and the Chinese RMB exchange rates: A copula approach," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    19. Liu, Ming-Hua & Margaritis, Dimitris & Zhang, Yang, 2013. "Market-driven coal prices and state-administered electricity prices in China," Energy Economics, Elsevier, vol. 40(C), pages 167-175.
    20. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Limit Theory Of Real‐Time Detectors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 1079-1134, November.
    21. Stiglitz, Joseph E, 1990. "Symposium on Bubbles," Journal of Economic Perspectives, American Economic Association, vol. 4(2), pages 13-18, Spring.
    22. Khan, Khalid & Su, Chi-Wei & Rehman, Ashfaq U., 2021. "Do multiple bubbles exist in coal price?," Resources Policy, Elsevier, vol. 73(C).
    23. Khan, Khalid & Su, Chi Wei & Khurshid, Adnan, 2022. "Do booms and busts identify bubbles in energy prices?," Resources Policy, Elsevier, vol. 76(C).
    24. Zhang, Yanfang & Nie, Rui & Shi, Xunpeng & Qian, Xiangyan & Wang, Ke, 2019. "Can energy-price regulations smooth price fluctuations? Evidence from China’s coal sector," Energy Policy, Elsevier, vol. 128(C), pages 125-135.
    25. Drachal, Krzysztof, 2021. "Forecasting selected energy commodities prices with Bayesian dynamic finite mixtures," Energy Economics, Elsevier, vol. 99(C).
    26. Corbet, Shaen & Goodell, John W. & Günay, Samet, 2020. "Co-movements and spillovers of oil and renewable firms under extreme conditions: New evidence from negative WTI prices during COVID-19," Energy Economics, Elsevier, vol. 92(C).
    27. Su, Chi-Wei & Li, Zheng-Zheng & Chang, Hsu-Ling & Lobonţ, Oana-Ramona, 2017. "When Will Occur the Crude Oil Bubbles?," Energy Policy, Elsevier, vol. 102(C), pages 1-6.
    28. Yuan, Jiahai & Wang, Yang & Zhang, Weirong & Zhao, Changhong & Liu, Qian & Shen, Xinyi & Zhang, Kai & Dong, Liansai, 2017. "Will recent boom in coal power lead to a bust in China? A micro-economic analysis," Energy Policy, Elsevier, vol. 108(C), pages 645-656.
    29. Burke, Paul J. & Liao, Hua, 2015. "Is the price elasticity of demand for coal in China increasing?," China Economic Review, Elsevier, vol. 36(C), pages 309-322.
    30. Jia, Zhijie & Lin, Boqiang, 2021. "How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective," Energy, Elsevier, vol. 233(C).
    31. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Limit Theory Of Real‐Time Detectors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(4), pages 1079-1134, November.
    32. Zolfaghari, Mehdi & Ghoddusi, Hamed & Faghihian, Fatemeh, 2020. "Volatility spillovers for energy prices: A diagonal BEKK approach," Energy Economics, Elsevier, vol. 92(C).
    33. Umar, Muhammad & Su, Chi-Wei & Rizvi, Syed Kumail Abbas & Lobonţ, Oana-Ramona, 2021. "Driven by fundamentals or exploded by emotions: Detecting bubbles in oil prices," Energy, Elsevier, vol. 231(C).
    34. Serletis, Apostolos & Xu, Libo, 2016. "Volatility and a century of energy markets dynamics," Energy Economics, Elsevier, vol. 55(C), pages 1-9.
    35. Sharma, Shahil & Escobari, Diego, 2018. "Identifying price bubble periods in the energy sector," Energy Economics, Elsevier, vol. 69(C), pages 418-429.
    36. Maghyereh, Aktham I. & Awartani, Basel & Abdoh, Hussein, 2019. "The co-movement between oil and clean energy stocks: A wavelet-based analysis of horizon associations," Energy, Elsevier, vol. 169(C), pages 895-913.
    37. Wang, Delu & Ma, Gang & Song, Xuefeng & Liu, Yun, 2017. "Energy price slump and policy response in the coal-chemical industry district: A case study of Ordos with a system dynamics model," Energy Policy, Elsevier, vol. 104(C), pages 325-339.
    38. Li, Hong-Zhou & Tian, Xian-Liang & Zou, Tao, 2015. "Impact analysis of coal-electricity pricing linkage scheme in China based on stochastic frontier cost function," Applied Energy, Elsevier, vol. 151(C), pages 296-305.
    39. Yin, Guangzhi & Duan, Maosheng, 2022. "Pricing the deep peak regulation service of coal-fired power plants to promote renewable energy integration," Applied Energy, Elsevier, vol. 321(C).
    40. Liu, Hsiang-Hsi & Chen, Yi-Chun, 2013. "A study on the volatility spillovers, long memory effects and interactions between carbon and energy markets: The impacts of extreme weather," Economic Modelling, Elsevier, vol. 35(C), pages 840-855.
    41. Wang, Zuyi & Kim, Man-Keun, 2022. "Price bubbles in oil & gas markets and their transfer," Resources Policy, Elsevier, vol. 79(C).
    42. Zhang, Yanfang & Zhang, Ming & Liu, Yue & Nie, Rui, 2017. "Enterprise investment, local government intervention and coal overcapacity: The case of China," Energy Policy, Elsevier, vol. 101(C), pages 162-169.
    43. Cui, Herui & Wei, Pengbang, 2017. "Analysis of thermal coal pricing and the coal price distortion in China from the perspective of market forces," Energy Policy, Elsevier, vol. 106(C), pages 148-154.
    44. Martin Nerlinger & Sebastian Utz, 2022. "The impact of the Russia-Ukraine conflict on the green energy transition – A capital market perspective," Swiss Finance Institute Research Paper Series 22-49, Swiss Finance Institute.
    45. Li, Fengyun & Li, Xingmei & Zheng, Haofeng & Yang, Fei & Dang, Ruinan, 2021. "How alternative energy competition shocks natural gas development in China: A novel time series analysis approach," Resources Policy, Elsevier, vol. 74(C).
    46. Xiaopeng Guo & Yanan Wei & Jiahai Yuan, 2016. "Will the Steam Coal Price Rebound under the New Economy Normalcy in China?," Energies, MDPI, vol. 9(9), pages 1-13, September.
    47. Wang, Kai-Hua & Su, Chi-Wei & Lobonţ, Oana-Ramona & Moldovan, Nicoleta-Claudia, 2020. "Chinese renewable energy industries’ boom and recession: Evidence from bubble detection procedure," Energy Policy, Elsevier, vol. 138(C).
    48. Punzi, Maria Teresa, 2019. "The impact of energy price uncertainty on macroeconomic variables," Energy Policy, Elsevier, vol. 129(C), pages 1306-1319.
    49. Ding, Lili & Zhao, Zhongchao & Han, Meng, 2021. "Probability density forecasts for steam coal prices in China: The role of high-frequency factors," Energy, Elsevier, vol. 220(C).
    50. Guo, Jin & Zheng, Xinye & Chen, Zhan-Ming, 2016. "How does coal price drive up inflation? Reexamining the relationship between coal price and general price level in China," Energy Economics, Elsevier, vol. 57(C), pages 265-276.
    51. Peng, Wuyuan, 2011. "Coal sector reform and its implications for the power sector in China," Resources Policy, Elsevier, vol. 36(1), pages 60-71, March.
    52. Li, Jianglong & Xie, Chunping & Long, Houyin, 2019. "The roles of inter-fuel substitution and inter-market contagion in driving energy prices: Evidences from China’s coal market," Energy Economics, Elsevier, vol. 84(C).
    53. Guo, Yanfeng & Zhao, Huanyu, 2024. "Volatility spillovers between oil and coal prices and its implications for energy portfolio management in China," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 446-457.
    54. Wang Gao & Jiajia Wei & Shixiong Yang, 2023. "The Asymmetric Effects of Extreme Climate Risk Perception on Coal Futures Return Dynamics: Evidence from Nonparametric Causality-In-Quantiles Tests," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    55. Gharib, Cheima & Mefteh-Wali, Salma & Serret, Vanessa & Ben Jabeur, Sami, 2021. "Impact of COVID-19 pandemic on crude oil prices: Evidence from Econophysics approach," Resources Policy, Elsevier, vol. 74(C).
    56. Chen, Hanyi & Liu, Kui & Shi, Tie & Wang, Linfeng, 2022. "Coal consumption and economic growth: A Chinese city-level study," Energy Economics, Elsevier, vol. 109(C).
    57. Li, Zheng-Zheng & Su, Chi-Wei & Chang, Tsangyao & Lobonţ, Oana-Ramona, 2022. "Policy-driven or market-driven? Evidence from steam coal price bubbles in China," Resources Policy, Elsevier, vol. 78(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Wenchao & Guo, Zhichen & Zhang, Jiayan Shi Yaxuan & Luo, Lingle, 2024. "Forecasting of coal and electricity prices in China: Evidence from the quantum bee colony-support vector regression neural network," Energy Economics, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zheng-Zheng & Su, Chi-Wei & Chang, Tsangyao & Lobonţ, Oana-Ramona, 2022. "Policy-driven or market-driven? Evidence from steam coal price bubbles in China," Resources Policy, Elsevier, vol. 78(C).
    2. Wang, Tiantian & Wu, Fei & Zhang, Dayong & Ji, Qiang, 2023. "Energy market reforms in China and the time-varying connectedness of domestic and international markets," Energy Economics, Elsevier, vol. 117(C).
    3. Haykir, Ozkan & Yagli, Ibrahim & Aktekin Gok, Emine Dilara & Budak, Hilal, 2022. "Oil price explosivity and stock return: Do sector and firm size matter?," Resources Policy, Elsevier, vol. 78(C).
    4. Gu, Fu & Wang, Jiqiang & Guo, Jianfeng & Fan, Ying, 2020. "How the supply and demand of steam coal affect the investment in clean energy industry? Evidence from China," Resources Policy, Elsevier, vol. 69(C).
    5. Khan, Khalid & Su, Chi Wei & Khurshid, Adnan, 2022. "Do booms and busts identify bubbles in energy prices?," Resources Policy, Elsevier, vol. 76(C).
    6. Sibande, Xolani & Demirer, Riza & Balcilar, Mehmet & Gupta, Rangan, 2023. "On the pricing effects of bitcoin mining in the fossil fuel market: The case of coal," Resources Policy, Elsevier, vol. 85(PB).
    7. Shiqiu Zhu & Yuanying Chi & Kaiye Gao & Yahui Chen & Rui Peng, 2022. "Analysis of Influencing Factors of Thermal Coal Price," Energies, MDPI, vol. 15(15), pages 1-16, August.
    8. Wang, Xiaofei & Liu, Chuangeng & Chen, Shaojie & Chen, Lei & Li, Ke & Liu, Na, 2020. "Impact of coal sector’s de-capacity policy on coal price," Applied Energy, Elsevier, vol. 265(C).
    9. Ding, Lili & Zhao, Zhongchao & Han, Meng, 2021. "Probability density forecasts for steam coal prices in China: The role of high-frequency factors," Energy, Elsevier, vol. 220(C).
    10. Akcora, Begum & Kandemir Kocaaslan, Ozge, 2023. "Price bubbles in the European natural gas market between 2011 and 2020," Resources Policy, Elsevier, vol. 80(C).
    11. El Montasser, Ghassen & Malek Belhoula, Mohamed & Charfeddine, Lanouar, 2023. "Co-explosivity versus leading effects: Evidence from crude oil and agricultural commodities," Resources Policy, Elsevier, vol. 81(C).
    12. Gharib, Cheima & Mefteh-Wali, Salma & Serret, Vanessa & Ben Jabeur, Sami, 2021. "Impact of COVID-19 pandemic on crude oil prices: Evidence from Econophysics approach," Resources Policy, Elsevier, vol. 74(C).
    13. Su, Chi Wei & Qin, Meng & Chang, Hsu-Ling & Țăran, Alexandra-Mădălina, 2023. "Which risks drive European natural gas bubbles? Novel evidence from geopolitics and climate," Resources Policy, Elsevier, vol. 81(C).
    14. Wang, Zuyi & Kim, Man-Keun, 2022. "Price bubbles in oil & gas markets and their transfer," Resources Policy, Elsevier, vol. 79(C).
    15. Zhang, Yanfang & Shi, Xunpeng & Qian, Xiangyan & Chen, Sai & Nie, Rui, 2021. "Macroeconomic effect of energy transition to carbon neutrality: Evidence from China's coal capacity cut policy," Energy Policy, Elsevier, vol. 155(C).
    16. Wang, Tiantian & Qu, Wan & Zhang, Dayong & Ji, Qiang & Wu, Fei, 2022. "Time-varying determinants of China's liquefied natural gas import price: A dynamic model averaging approach," Energy, Elsevier, vol. 259(C).
    17. Khan, Khalid & Su, Chi-Wei & Rehman, Ashfaq U., 2021. "Do multiple bubbles exist in coal price?," Resources Policy, Elsevier, vol. 73(C).
    18. Wei, Yigang & Li, Yan & Wang, Zhicheng, 2022. "Multiple price bubbles in global major emission trading schemes: Evidence from European Union, New Zealand, South Korea and China," Energy Economics, Elsevier, vol. 113(C).
    19. Potrykus, Marcin, 2023. "Investing in wine, precious metals and G-7 stock markets – A co-occurrence analysis for price bubbles," International Review of Financial Analysis, Elsevier, vol. 87(C).
    20. Potrykus, Marcin, 2023. "Price bubbles in commodity market – A single time series and panel data analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 110-117.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:129:y:2024:i:c:s014098832300751x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.