IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v298y2024ics0360544224010946.html
   My bibliography  Save this article

Predicting energy prices based on a novel hybrid machine learning: Comprehensive study of multi-step price forecasting

Author

Listed:
  • Yang, Kailing
  • Zhang, Xi
  • Luo, Haojia
  • Hou, Xianping
  • Lin, Yu
  • Wu, Jingyu
  • Yu, Liang

Abstract

Accurate prediction of energy prices is crucial to the development of energy security and environmental policies in various countries. This paper proposes a novel multi-step prediction hybrid model with genetic algorithm for variational mode decomposition, improved complete ensemble empirical modal decomposition with adaptive noise, bidirectional gated recurrent unit, temporal convolutional network, and multi-layer perceptron (GVMD-ICEEMDAN-BIGRU-TCN-MLP) for predicting carbon and natural gas futures prices. First genetic algorithm (GA) is used to fix the parameters of VMD model, the carbon and natural gas prices are decomposed into subsequences. Then the difference between the original series and the VMD after decomposition is further decomposed into subseries using ICEEMDAN. Next, the highest frequency series is predicted using the MLP model, and other subsequences are predicted using the BIGRU-TCN model. Finally, each predicted value is added linearly to determine the final result of steps 1, 3, and 5 of the entire forecasting process. According to the experimental results, it is shown that the model has lower prediction errors than the comparison model under mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R2), and modified Diebold-Mariano test (MDM). The good prediction results of the novel hybrid model are demonstrated in multi-step ahead integrated prediction experiments, especially in the experiments with 1-step ahead prediction, as well as in the experiments with varying training ratios.

Suggested Citation

  • Yang, Kailing & Zhang, Xi & Luo, Haojia & Hou, Xianping & Lin, Yu & Wu, Jingyu & Yu, Liang, 2024. "Predicting energy prices based on a novel hybrid machine learning: Comprehensive study of multi-step price forecasting," Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224010946
    DOI: 10.1016/j.energy.2024.131321
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010946
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131321?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    2. Alameer, Zakaria & Fathalla, Ahmed & Li, Kenli & Ye, Haiwang & Jianhua, Zhang, 2020. "Multistep-ahead forecasting of coal prices using a hybrid deep learning model," Resources Policy, Elsevier, vol. 65(C).
    3. Zhang, Kefei & Cao, Hua & Thé, Jesse & Yu, Hesheng, 2022. "A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms," Applied Energy, Elsevier, vol. 306(PA).
    4. Du, Pei & Guo, Ju’e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2021. "Multi-step metal prices forecasting based on a data preprocessing method and an optimized extreme learning machine by marine predators algorithm," Resources Policy, Elsevier, vol. 74(C).
    5. Ji, Qiang & Zhang, Hai-Ying & Geng, Jiang-Bo, 2018. "What drives natural gas prices in the United States? – A directed acyclic graph approach," Energy Economics, Elsevier, vol. 69(C), pages 79-88.
    6. Nguyen, Hoang-Phuong & Baraldi, Piero & Zio, Enrico, 2021. "Ensemble empirical mode decomposition and long short-term memory neural network for multi-step predictions of time series signals in nuclear power plants," Applied Energy, Elsevier, vol. 283(C).
    7. Lin, Yu & Liao, Qidong & Lin, Zixiao & Tan, Bin & Yu, Yuanyuan, 2022. "A novel hybrid model integrating modified ensemble empirical mode decomposition and LSTM neural network for multi-step precious metal prices prediction," Resources Policy, Elsevier, vol. 78(C).
    8. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    9. Abramson, Bruce & Finizza, Anthony, 1995. "Probabilistic forecasts from probabilistic models: A case study in the oil market," International Journal of Forecasting, Elsevier, vol. 11(1), pages 63-72, March.
    10. Harvey, David I. & Leybourne, Stephen J. & Whitehouse, Emily J., 2017. "Forecast evaluation tests and negative long-run variance estimates in small samples," International Journal of Forecasting, Elsevier, vol. 33(4), pages 833-847.
    11. Wang, Jujie & Li, Yaning, 2018. "Multi-step ahead wind speed prediction based on optimal feature extraction, long short term memory neural network and error correction strategy," Applied Energy, Elsevier, vol. 230(C), pages 429-443.
    12. Deepak Gupta & Mahardhika Pratama & Zhenyuan Ma & Jun Li & Mukesh Prasad, 2019. "Financial time series forecasting using twin support vector regression," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-27, March.
    13. Aminu, Nasir, 2019. "Energy prices volatility and the United Kingdom: Evidence from a dynamic stochastic general equilibrium model," Energy, Elsevier, vol. 172(C), pages 487-497.
    14. Brabec, Marek & Konár, Ondrej & Pelikán, Emil & Malý, Marek, 2008. "A nonlinear mixed effects model for the prediction of natural gas consumption by individual customers," International Journal of Forecasting, Elsevier, vol. 24(4), pages 659-678.
    15. Wang, Bin & Wang, Jun, 2021. "Energy futures price prediction and evaluation model with deep bidirectional gated recurrent unit neural network and RIF-based algorithm," Energy, Elsevier, vol. 216(C).
    16. Hirotugu Akaike, 1969. "Fitting autoregressive models for prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 243-247, December.
    17. Wang, Jie & Wang, Jun, 2016. "Forecasting energy market indices with recurrent neural networks: Case study of crude oil price fluctuations," Energy, Elsevier, vol. 102(C), pages 365-374.
    18. Zhang, Tingting & Tang, Zhenpeng & Wu, Junchuan & Du, Xiaoxu & Chen, Kaijie, 2021. "Multi-step-ahead crude oil price forecasting based on two-layer decomposition technique and extreme learning machine optimized by the particle swarm optimization algorithm," Energy, Elsevier, vol. 229(C).
    19. Lin, Yu & Yan, Yan & Xu, Jiali & Liao, Ying & Ma, Feng, 2021. "Forecasting stock index price using the CEEMDAN-LSTM model," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    20. Niu, Dongxiao & Yu, Min & Sun, Lijie & Gao, Tian & Wang, Keke, 2022. "Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism," Applied Energy, Elsevier, vol. 313(C).
    21. Hou, Aijun & Suardi, Sandy, 2012. "A nonparametric GARCH model of crude oil price return volatility," Energy Economics, Elsevier, vol. 34(2), pages 618-626.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yu & Lu, Qin & Tan, Bin & Yu, Yuanyuan, 2022. "Forecasting energy prices using a novel hybrid model with variational mode decomposition," Energy, Elsevier, vol. 246(C).
    2. Qin Lu & Jingwen Liao & Kechi Chen & Yanhui Liang & Yu Lin, 2024. "Predicting Natural Gas Prices Based on a Novel Hybrid Model with Variational Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 639-678, February.
    3. Lin, Yu & Liao, Qidong & Lin, Zixiao & Tan, Bin & Yu, Yuanyuan, 2022. "A novel hybrid model integrating modified ensemble empirical mode decomposition and LSTM neural network for multi-step precious metal prices prediction," Resources Policy, Elsevier, vol. 78(C).
    4. Guo, Jingjun & Zhao, Zhengling & Sun, Jingyun & Sun, Shaolong, 2022. "Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework," Resources Policy, Elsevier, vol. 77(C).
    5. Huang, Yu-ting & Bai, Yu-long & Yu, Qing-he & Ding, Lin & Ma, Yong-jie, 2022. "Application of a hybrid model based on the Prophet model, ICEEMDAN and multi-model optimization error correction in metal price prediction," Resources Policy, Elsevier, vol. 79(C).
    6. Cheng, Fangzheng & Li, Tian & Wei, Yi-ming & Fan, Tijun, 2019. "The VEC-NAR model for short-term forecasting of oil prices," Energy Economics, Elsevier, vol. 78(C), pages 656-667.
    7. Zhao, Yuan & Zhang, Weiguo & Gong, Xue & Wang, Chao, 2021. "A novel method for online real-time forecasting of crude oil price," Applied Energy, Elsevier, vol. 303(C).
    8. He, Zhichao & Huang, Jianhua, 2023. "A novel non-ferrous metal price hybrid forecasting model based on data preprocessing and error correction," Resources Policy, Elsevier, vol. 86(PB).
    9. Sun, Jingyun & Zhao, Panpan & Sun, Shaolong, 2022. "A new secondary decomposition-reconstruction-ensemble approach for crude oil price forecasting," Resources Policy, Elsevier, vol. 77(C).
    10. Zhou, Jianguo & Xu, Zhongtian, 2023. "A novel three-stage hybrid learning paradigm based on a multi-decomposition strategy, optimized relevance vector machine, and error correction for multi-step forecasting of precious metal prices," Resources Policy, Elsevier, vol. 80(C).
    11. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    12. Rui Luo & Jinpei Liu & Piao Wang & Zhifu Tao & Huayou Chen, 2024. "A multisource data‐driven combined forecasting model based on internet search keyword screening method for interval soybean futures price," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 366-390, March.
    13. Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
    14. Junhao Wu & Yuan Hu & Daqing Wu & Zhengyong Yang, 2022. "An Aquatic Product Price Forecast Model Using VMD-IBES-LSTM Hybrid Approach," Agriculture, MDPI, vol. 12(8), pages 1-26, August.
    15. Kwas, Marek & Paccagnini, Alessia & Rubaszek, Michał, 2021. "Common factors and the dynamics of industrial metal prices. A forecasting perspective," Resources Policy, Elsevier, vol. 74(C).
    16. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72, October.
    17. Zied Ftiti & Kais Tissaoui & Sahbi Boubaker, 2022. "On the relationship between oil and gas markets: a new forecasting framework based on a machine learning approach," Annals of Operations Research, Springer, vol. 313(2), pages 915-943, June.
    18. Rubaszek Michal & Karolak Zuzanna & Kwas Marek & Uddin Gazi Salah, 2020. "The role of the threshold effect for the dynamics of futures and spot prices of energy commodities," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(5), pages 1-20, December.
    19. Potočnik, Primož & Soldo, Božidar & Šimunović, Goran & Šarić, Tomislav & Jeromen, Andrej & Govekar, Edvard, 2014. "Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia," Applied Energy, Elsevier, vol. 129(C), pages 94-103.
    20. Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224010946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.