IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v95y2024ics0301420724005117.html
   My bibliography  Save this article

Estimation of global natural gas spot prices using big data and symbolic regression

Author

Listed:
  • Stajić, Ljubiša
  • Praksová, Renáta
  • Brkić, Dejan
  • Praks, Pavel

Abstract

This article provides an estimation of future natural gas spot prices on the global international market based on symbolic regression where the sensitivity analysis is performed to identify the most important input parameters. Numerical data sets, comprising various parameters, some of which demonstrate stronger correlations with the global spot price of natural gas, are utilised in this context. PySR (Python Symbolic Regression), a free and open-source software for symbolic regression written in Python, and Julia is used for the presented analysis. Based on the accuracy of the prediction and after sensitivity analysis performed in SALib software, some of the parameters are discovered to be more influencing on natural gas prices compared with others, making this approach suitable for further deeper energy analysis. The analysis shows that in general, global prices of natural gas are influenced mostly by the price of crude oil. The article also presents an overview of methods for predicting natural gas prices with a complementary contribution (interpretable models provided by symbolic regression and sensitivity analysis) tested on the real gas price time-series dataset.

Suggested Citation

  • Stajić, Ljubiša & Praksová, Renáta & Brkić, Dejan & Praks, Pavel, 2024. "Estimation of global natural gas spot prices using big data and symbolic regression," Resources Policy, Elsevier, vol. 95(C).
  • Handle: RePEc:eee:jrpoli:v:95:y:2024:i:c:s0301420724005117
    DOI: 10.1016/j.resourpol.2024.105144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420724005117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2024.105144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin-Valmayor, Miguel A. & Gil-Alana, Luis A. & Infante, Juan, 2023. "Energy prices in Europe. Evidence of persistence across markets," Resources Policy, Elsevier, vol. 82(C).
    2. Asche, Frank & Misund, Bård & Sikveland, Marius, 2013. "The relationship between spot and contract gas prices in Europe," Energy Economics, Elsevier, vol. 38(C), pages 212-217.
    3. Dimitrios Mouchtaris & Emmanouil Sofianos & Periklis Gogas & Theophilos Papadimitriou, 2021. "Forecasting Natural Gas Spot Prices with Machine Learning," Energies, MDPI, vol. 14(18), pages 1-13, September.
    4. Alvarez, Francisco & Amman, Hans, 1999. "Learning-by-Doing under Uncertainty," Computational Economics, Springer;Society for Computational Economics, vol. 14(3), pages 255-262, December.
    5. Wu, Siping & Xia, Guilin & Liu, Lang, 2023. "A novel decomposition integration model for power coal price forecasting," Resources Policy, Elsevier, vol. 80(C).
    6. Hulshof, Daan & van der Maat, Jan-Pieter & Mulder, Machiel, 2016. "Market fundamentals, competition and natural-gas prices," Energy Policy, Elsevier, vol. 94(C), pages 480-491.
    7. Yadong Pei & Chiou-Jye Huang & Yamin Shen & Mingyue Wang, 2023. "A Novel Model for Spot Price Forecast of Natural Gas Based on Temporal Convolutional Network," Energies, MDPI, vol. 16(5), pages 1-15, February.
    8. Alam, Md Shabbir & Murshed, Muntasir & Manigandan, Palanisamy & Pachiyappan, Duraisamy & Abduvaxitovna, Shamansurova Zilola, 2023. "Forecasting oil, coal, and natural gas prices in the pre-and post-COVID scenarios: Contextual evidence from India using time series forecasting tools," Resources Policy, Elsevier, vol. 81(C).
    9. Liang, Xuedong & Luo, Peng & Li, Xiaoyan & Wang, Xia & Shu, Lingli, 2023. "Crude oil price prediction using deep reinforcement learning," Resources Policy, Elsevier, vol. 81(C).
    10. Anne Neumann & Sophia Rüster & Christian von Hirschhausen, 2015. "Long-Term Contracts in the Natural Gas Industry: Literature Survey and Data on 426 Contracts (1965-2014)," Data Documentation 77, DIW Berlin, German Institute for Economic Research.
    11. Chao Liang & Feng Ma & Lu Wang & Qing Zeng, 2021. "The information content of uncertainty indices for natural gas futures volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1310-1324, November.
    12. Moting Su & Zongyi Zhang & Ye Zhu & Donglan Zha & Wenying Wen, 2019. "Data Driven Natural Gas Spot Price Prediction Models Using Machine Learning Methods," Energies, MDPI, vol. 12(9), pages 1-17, May.
    13. Edward W. Erickson & Robert M. Spann, 1971. "Supply Response in a Regulated Industry: The Case of Natural Gas," Bell Journal of Economics, The RAND Corporation, vol. 2(1), pages 94-121, Spring.
    14. Hamid Abrishami & Vida Varahrami, 2011. "Different methods for gas price forecasting," Cuadernos de Economía - Spanish Journal of Economics and Finance, Asociación Cuadernos de Economía, vol. 34(96), pages 137-144, Diciembre.
    15. Aminu, Nasir & Meenagh, David & Minford, Patrick, 2018. "The role of energy prices in the Great Recession — A two-sector model with unfiltered data," Energy Economics, Elsevier, vol. 71(C), pages 14-34.
    16. Akcora, Begum & Kandemir Kocaaslan, Ozge, 2023. "Price bubbles in the European natural gas market between 2011 and 2020," Resources Policy, Elsevier, vol. 80(C).
    17. Ediger, Volkan Ş. & Berk, Istemi, 2023. "Future availability of natural gas: Can it support sustainable energy transition?," Resources Policy, Elsevier, vol. 85(PA).
    18. Xie, Gang & Jiang, Fuxin & Zhang, Chengyuan, 2023. "A secondary decomposition-ensemble methodology for forecasting natural gas prices using multisource data," Resources Policy, Elsevier, vol. 85(PA).
    19. Sobol’, I.M. & Tarantola, S. & Gatelli, D. & Kucherenko, S.S. & Mauntz, W., 2007. "Estimating the approximation error when fixing unessential factors in global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 92(7), pages 957-960.
    20. Zhang, Dayong & Shi, Min & Shi, Xunpeng, 2018. "Oil indexation, market fundamentals, and natural gas prices: An investigation of the Asian premium in natural gas trade," Energy Economics, Elsevier, vol. 69(C), pages 33-41.
    21. Salisu, Afees A. & Ndako, Umar B. & Vo, Xuan Vinh, 2023. "Transition risk, physical risk, and the realized volatility of oil and natural gas prices," Resources Policy, Elsevier, vol. 81(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halser, Christoph & Paraschiv, Florentina & Russo, Marianna, 2023. "Oil–gas price relationships on three continents: Disruptions and equilibria," Journal of Commodity Markets, Elsevier, vol. 31(C).
    2. Yadong Pei & Chiou-Jye Huang & Yamin Shen & Mingyue Wang, 2023. "A Novel Model for Spot Price Forecast of Natural Gas Based on Temporal Convolutional Network," Energies, MDPI, vol. 16(5), pages 1-15, February.
    3. Lahmiri, Salim, 2024. "Fossil energy market price prediction by using machine learning with optimal hyper-parameters: A comparative study," Resources Policy, Elsevier, vol. 92(C).
    4. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    5. Wang, Jiqian & Ma, Feng & Bouri, Elie & Zhong, Juandan, 2022. "Volatility of clean energy and natural gas, uncertainty indices, and global economic conditions," Energy Economics, Elsevier, vol. 108(C).
    6. Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2021. "Forecasting natural gas prices using highly flexible time-varying parameter models," Economic Modelling, Elsevier, vol. 105(C).
    7. Jonathan Berrisch & Florian Ziel, 2022. "Distributional modeling and forecasting of natural gas prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1065-1086, September.
    8. Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2020. "Forecasting natural gas prices using highly flexible time-varying parameter models," Working Papers 2020-01, University of Tasmania, Tasmanian School of Business and Economics.
    9. Akcora, Begum & Kandemir Kocaaslan, Ozge, 2023. "Price bubbles in the European natural gas market between 2011 and 2020," Resources Policy, Elsevier, vol. 80(C).
    10. Bastianin, Andrea & Galeotti, Marzio & Polo, Michele, 2019. "Convergence of European natural gas prices," Energy Economics, Elsevier, vol. 81(C), pages 793-811.
    11. Saleh Mothana Obadi & Matej Korcek, 2020. "Driving Fundamentals of Natural Gas Price in Europe," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 318-324.
    12. Hassan Hamie & Anis Hoayek & Hans Auer, 2020. "Modeling Post-Liberalized European Gas Market Concentration—A Game Theory Perspective," Forecasting, MDPI, vol. 3(1), pages 1-16, December.
    13. Palma, Alessia & Paltrinieri, Andrea & Goodell, John W. & Oriani, Marco Ercole, 2024. "The black box of natural gas market: Past, present, and future," International Review of Financial Analysis, Elsevier, vol. 94(C).
    14. Sutrisno, Aziiz & Nomaler, Ӧnder & Alkemade, Floor, 2021. "Has the global expansion of energy markets truly improved energy security?," Energy Policy, Elsevier, vol. 148(PA).
    15. Theodosios Perifanis & Athanasios Dagoumas, 2020. "Price and Volatility Spillovers between Crude Oil and Natural Gas markets in Europe and Japan-Korea," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 432-446.
    16. Luo, Keyu & Guo, Qiang & Li, Xiafei, 2022. "Can the return connectedness indices from grey energy to natural gas help to forecast the natural gas returns?," Energy Economics, Elsevier, vol. 109(C).
    17. Sun-Feel Yang & So-Won Choi & Eul-Bum Lee, 2023. "A Prediction Model for Spot LNG Prices Based on Machine Learning Algorithms to Reduce Fluctuation Risks in Purchasing Prices," Energies, MDPI, vol. 16(11), pages 1-39, May.
    18. Wang, Tiantian & Qu, Wan & Zhang, Dayong & Ji, Qiang & Wu, Fei, 2022. "Time-varying determinants of China's liquefied natural gas import price: A dynamic model averaging approach," Energy, Elsevier, vol. 259(C).
    19. Chi Kong Chyong & David M Reiner & Dhruvak Aggarwal, 2023. "Market Power and Long-term Gas Contracts: The Case of Gazprom in Central and Eastern European Gas Markets," The Energy Journal, , vol. 44(1), pages 55-74, January.
    20. Yiqun Ma & Wei Zhen, 2020. "Market Fundamentals and Iron Ore Spot Prices," The Economic Record, The Economic Society of Australia, vol. 96(315), pages 470-489, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:95:y:2024:i:c:s0301420724005117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.