IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v87y2020ics0966692320301290.html
   My bibliography  Save this article

Joint estimation of mode and time of day choice accounting for arrival time flexibility, travel time reliability and crowding on public transport

Author

Listed:
  • Ho, Chinh Q.
  • Hensher, David A.
  • Wang, Shangbo

Abstract

This study develops joint choice models of mode and departure time for implementation in MetroScan, a new version of TRESIS (Hensher and Ton, 2002). Separate models are estimated for work and non-work purposes, testing all practical alternatives of model structure with a rich set of explanatory variables. The contributions of the current work to the existing TRESIS are twofold. First, travel demand for non-work purposes such as shopping, social and recreation are explicitly modelled in MetroScan as opposed to TRESIS that scales the demand for work purposes to obtain non-work travel demand. Second, choices of travel mode and departure time become more sensitive to situational factors such as the flexibility of arrival time, the reliability of travel time and crowding. Willingness to pay for various improvements to the level of service is derived. We describe and demonstrate how the proposed models are applied in the general modelling framework of MetroScan.

Suggested Citation

  • Ho, Chinh Q. & Hensher, David A. & Wang, Shangbo, 2020. "Joint estimation of mode and time of day choice accounting for arrival time flexibility, travel time reliability and crowding on public transport," Journal of Transport Geography, Elsevier, vol. 87(C).
  • Handle: RePEc:eee:jotrge:v:87:y:2020:i:c:s0966692320301290
    DOI: 10.1016/j.jtrangeo.2020.102793
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692320301290
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2020.102793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yoram Shiftan & Moshe Ben-Akiva, 2011. "A practical policy-sensitive, activity-based, travel-demand model," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 47(3), pages 517-541, December.
    2. Bhat, Chandra R., 1998. "Accommodating flexible substitution patterns in multi-dimensional choice modeling: formulation and application to travel mode and departure time choice," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 455-466, September.
    3. Ho, Chinh Q. & Hensher, David A. & Ellison, Richard, 2017. "Endogenous treatment of residential location choices in transport and land use models: Introducing the MetroScan framework," Journal of Transport Geography, Elsevier, vol. 64(C), pages 120-131.
    4. Ho, Chinh Q. & Hensher, David A., 2016. "A workplace choice model accounting for spatial competition and agglomeration effects," Journal of Transport Geography, Elsevier, vol. 51(C), pages 193-203.
    5. Stephane Hess & John Polak & Andrew Daly & Geoffrey Hyman, 2007. "Flexible substitution patterns in models of mode and time of day choice: new evidence from the UK and the Netherlands," Transportation, Springer, vol. 34(2), pages 213-238, March.
    6. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    7. Hess, Stephane & Daly, Andrew & Rohr, Charlene & Hyman, Geoff, 2007. "On the development of time period and mode choice models for use in large scale modelling forecasting systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(9), pages 802-826, November.
    8. de Jong, Gerard & Daly, Andrew & Pieters, Marits & Vellay, Carine & Bradley, Mark & Hofman, Frank, 2003. "A model for time of day and mode choice using error components logit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(3), pages 245-268, May.
    9. de Dios Ortuzar, Juan & Iacobelli, Andres, 1998. "Mixed modelling of interurban trips by coach and train," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(5), pages 345-357, September.
    10. Arnott, R. & de Palma, A. & Lindsey, R., 1990. "Departure time and route choice for the morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 24(3), pages 209-228, June.
    11. Nurul Habib, Khandker M. & Day, Nicholas & Miller, Eric J., 2009. "An investigation of commuting trip timing and mode choice in the Greater Toronto Area: Application of a joint discrete-continuous model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(7), pages 639-653, August.
    12. Bhat, Chandra R., 1998. "Analysis of travel mode and departure time choice for urban shopping trips," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 361-371, August.
    13. McFadden, Daniel, 1974. "The measurement of urban travel demand," Journal of Public Economics, Elsevier, vol. 3(4), pages 303-328, November.
    14. Hensher,David A. & Rose,John M. & Greene,William H., 2015. "Applied Choice Analysis," Cambridge Books, Cambridge University Press, number 9781107465923, September.
    15. Davidson, William & Donnelly, Robert & Vovsha, Peter & Freedman, Joel & Ruegg, Steve & Hicks, Jim & Castiglione, Joe & Picado, Rosella, 2007. "Synthesis of first practices and operational research approaches in activity-based travel demand modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(5), pages 464-488, June.
    16. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    17. David Hensher & Tu Ton, 2002. "TRESIS: A transportation, land use and environmental strategy impact simulator for urban areas," Transportation, Springer, vol. 29(4), pages 439-457, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Guozheng & Wang, Dianhai & Cai, Zhengyi & Zeng, Jiaqi, 2024. "Competitiveness of public transit considering travel time reliability: A case study for commuter trips in Hangzhou, China," Journal of Transport Geography, Elsevier, vol. 114(C).
    2. Xu, Minhao & Shuai, Bin & Wang, Xin & Liu, Hongyi & Zhou, Hui, 2023. "Analysis of the accessibility of connecting transport at High-speed rail stations from the perspective of departing passengers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    3. Thuy Linh Hoang & Muhammad Adnan & Anh Tuan Vu & Nguyen Hoang-Tung & Bruno Kochan & Tom Bellemans, 2022. "Modeling and Structuring of Activity Scheduling Choices with Consideration of Intrazonal Tours: A Case Study of Motorcycle-Based Cities," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
    4. Wei Chiang Chan & Wan Hashim Wan Ibrahim & May Chiun Lo & Mohamad Kadim Suaidi & Shiaw Tong Ha, 2020. "Sustainability of Public Transportation: An Examination of User Behavior to Real-Time GPS Tracking Application," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
    5. Nichols, Aaron & Ryan, Jean & Palmqvist, Carl-William, 2024. "The importance of recurring public transport delays for accessibility and mode choice," Journal of Transport Geography, Elsevier, vol. 115(C).
    6. Chen, Tiantian & Fu, Xiaowen & Hensher, David A. & Li, Zhi-Chun & Sze, N.N., 2024. "Effects of proactive and reactive health control measures on public transport preferences of passengers – A stated preference study during the COVID-19 pandemic," Transport Policy, Elsevier, vol. 146(C), pages 175-192.
    7. David A. Hensher & Chinh Quoc Ho & Wen Liu & Edward Wei & Richard Ellison & Kyle Schroeckenthaler & Derek Cutler & Glen Weisbrod, 2020. "MetroScan: A Quick Scan Appraisal Capability to Identify Value Adding Sustainable Transport Initiatives," Sustainability, MDPI, vol. 12(19), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Mubassira & Machemehl, Randy, 2017. "Commercial vehicles time of day choice behavior in urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 68-83.
    2. de Jong, Gerard & Kouwenhoven, Marco & Ruijs, Kim & van Houwe, Pieter & Borremans, Dana, 2016. "A time-period choice model for road freight transport in Flanders based on stated preference data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 20-31.
    3. Bwambale, Andrew & Choudhury, Charisma F. & Hess, Stephane, 2019. "Modelling departure time choice using mobile phone data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 424-439.
    4. Kato, Hironori & Kaneko, Yuichiro & Soyama, Yoshihiko, 2014. "Economic benefits of urban rail projects that improve travel-time reliability: Evidence from Tokyo, Japan," Transport Policy, Elsevier, vol. 35(C), pages 202-210.
    5. Nurul Habib, Khandker M. & Day, Nicholas & Miller, Eric J., 2009. "An investigation of commuting trip timing and mode choice in the Greater Toronto Area: Application of a joint discrete-continuous model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(7), pages 639-653, August.
    6. Lizana, Pedro & Ortúzar, Juan de Dios & Arellana, Julián & Rizzi, Luis I., 2021. "Forecasting with a joint mode/time-of-day choice model based on combined RP and SC data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 302-316.
    7. Sanjana Hossain & Md. Sami Hasnine & Khandker Nurul Habib, 2021. "A latent class joint mode and departure time choice model for the Greater Toronto and Hamilton Area," Transportation, Springer, vol. 48(3), pages 1217-1239, June.
    8. Zannat, Khatun E. & Choudhury, Charisma F. & Hess, Stephane, 2024. "Modelling time-of-travel preferences capturing correlations between departure times and activity durations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 184(C).
    9. Thorhauge, Mikkel & Cherchi, Elisabetta & Rich, Jeppe, 2016. "How flexible is flexible? Accounting for the effect of rescheduling possibilities in choice of departure time for work trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 177-193.
    10. Badiola, Nicolás & Raveau, Sebastián & Galilea, Patricia, 2019. "Modelling preferences towards activities and their effect on departure time choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 39-51.
    11. José Holguín-Veras & Iván Sánchez-Díaz & Benjamin Reim, 2016. "ETC adoption, time-of-travel choice, and comprehensive policies to enhance time-of-day pricing: a stated preference investigation," Transportation, Springer, vol. 43(2), pages 273-299, March.
    12. Ghader, Sepehr & Carrion, Carlos & Zhang, Lei, 2019. "Autoregressive continuous logit: Formulation and application to time-of-day choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 240-257.
    13. Andrew Daly & Stephane Hess & Geoff Hyman & John Polak & Charlene Rohr, 2005. "Modelling departure time and mode choice," ERSA conference papers ersa05p688, European Regional Science Association.
    14. Sasic, Ana & Habib, Khandker Nurul, 2013. "Modelling departure time choices by a Heteroskedastic Generalized Logit (Het-GenL) model: An investigation on home-based commuting trips in the Greater Toronto and Hamilton Area (GTHA)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 15-32.
    15. Brey, Raúl & Walker, Joan L., 2011. "Latent temporal preferences: An application to airline travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 880-895, November.
    16. Peer, Stefanie & Knockaert, Jasper & Koster, Paul & Tseng, Yin-Yen & Verhoef, Erik T., 2013. "Door-to-door travel times in RP departure time choice models: An approximation method using GPS data," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 134-150.
    17. Stephane Hess & John Polak & Andrew Daly & Geoffrey Hyman, 2007. "Flexible substitution patterns in models of mode and time of day choice: new evidence from the UK and the Netherlands," Transportation, Springer, vol. 34(2), pages 213-238, March.
    18. Yu Nie, 2015. "A New Tradable Credit Scheme for the Morning Commute Problem," Networks and Spatial Economics, Springer, vol. 15(3), pages 719-741, September.
    19. Liu, Louie Nan & McDonald, John F., 1999. "Economic efficiency of second-best congestion pricing schemes in urban highway systems," Transportation Research Part B: Methodological, Elsevier, vol. 33(3), pages 157-188, April.
    20. Takayama, Yuki, 2018. "Time-varying congestion tolling and urban spatial structure," MPRA Paper 89896, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:87:y:2020:i:c:s0966692320301290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.