IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v86y2016icp20-31.html
   My bibliography  Save this article

A time-period choice model for road freight transport in Flanders based on stated preference data

Author

Listed:
  • de Jong, Gerard
  • Kouwenhoven, Marco
  • Ruijs, Kim
  • van Houwe, Pieter
  • Borremans, Dana

Abstract

This paper presents one of the first models explaining the choice of time-period in road freight transport. Policies that would shift some fraction of the trucks from peak to earlier and later periods will contribute to the reduction of congestion. Therefore there is an increasing interest in modelling the time-period sensitivity of road freight transport to changes in travel time and cost by period. The model developed here is based on a stated preference survey amongst receivers of goods in Flanders and was implemented in the strategic freight transport model of the Flemish authorities.

Suggested Citation

  • de Jong, Gerard & Kouwenhoven, Marco & Ruijs, Kim & van Houwe, Pieter & Borremans, Dana, 2016. "A time-period choice model for road freight transport in Flanders based on stated preference data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 20-31.
  • Handle: RePEc:eee:transe:v:86:y:2016:i:c:p:20-31
    DOI: 10.1016/j.tre.2015.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136655451500229X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2015.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Jong, Gerard & Ben-Akiva, Moshe, 2007. "A micro-simulation model of shipment size and transport chain choice," Transportation Research Part B: Methodological, Elsevier, vol. 41(9), pages 950-965, November.
    2. Holgui­n-Veras, José & Wang, Qian & Xu, Ning & Ozbay, Kaan & Cetin, Mecit & Polimeni, John, 2006. "The impacts of time of day pricing on the behavior of freight carriers in a congested urban area: Implications to road pricing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(9), pages 744-766, November.
    3. José Holguín-Veras & Michael Silas & John Polimeni & Brenda Cruz, 2008. "An Investigation on the Effectiveness of Joint Receiver–Carrier Policies to Increase Truck Traffic in the Off-peak Hours," Networks and Spatial Economics, Springer, vol. 8(4), pages 327-354, December.
    4. Hensher,David A. & Rose,John M. & Greene,William H., 2015. "Applied Choice Analysis," Cambridge Books, Cambridge University Press, number 9781107465923, October.
    5. Kouwenhoven, Marco & de Jong, Gerard C. & Koster, Paul & van den Berg, Vincent A.C. & Verhoef, Erik T. & Bates, John & Warffemius, Pim M.J., 2014. "New values of time and reliability in passenger transport in The Netherlands," Research in Transportation Economics, Elsevier, vol. 47(C), pages 37-49.
    6. Stephane Hess & John Polak & Andrew Daly & Geoffrey Hyman, 2007. "Flexible substitution patterns in models of mode and time of day choice: new evidence from the UK and the Netherlands," Transportation, Springer, vol. 34(2), pages 213-238, March.
    7. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    8. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    9. Hess, Stephane & Daly, Andrew & Rohr, Charlene & Hyman, Geoff, 2007. "On the development of time period and mode choice models for use in large scale modelling forecasting systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(9), pages 802-826, November.
    10. de Jong, Gerard & Daly, Andrew & Pieters, Marits & Vellay, Carine & Bradley, Mark & Hofman, Frank, 2003. "A model for time of day and mode choice using error components logit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(3), pages 245-268, May.
    11. Hunt, J.D. & Stefan, K.J., 2007. "Tour-based microsimulation of urban commercial movements," Transportation Research Part B: Methodological, Elsevier, vol. 41(9), pages 981-1013, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nadi, Ali & Sharma, Salil & van Lint, J.W.C. & Tavasszy, Lóránt & Snelder, Maaike, 2022. "A data-driven traffic modeling for analyzing the impacts of a freight departure time shift policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 130-150.
    2. Punel, Aymeric & Stathopoulos, Amanda, 2017. "Modeling the acceptability of crowdsourced goods deliveries: Role of context and experience effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 18-38.
    3. Khan, Mubassira & Machemehl, Randy, 2017. "Commercial vehicles time of day choice behavior in urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 68-83.
    4. Musolino, Giuseppe & Rindone, Corrado & Polimeni, Antonio & Vitetta, Antonino, 2019. "Planning urban distribution center location with variable restocking demand scenarios: General methodology and testing in a medium-size town," Transport Policy, Elsevier, vol. 80(C), pages 157-166.
    5. Aljohani, Khalid & Thompson, Russell G., 2020. "Receivers-led delivery consolidation policy: Estimating the characteristics of the most interested businesses to participate," Research in Transportation Economics, Elsevier, vol. 80(C).
    6. Klumpp, M. & Ruiner, C., 2018. "Digitalization and Work Organization in New Urban Food Delivery Systems," 2018 International European Forum (163rd EAAE Seminar), February 5-9, 2018, Innsbruck-Igls, Austria 276876, International European Forum on System Dynamics and Innovation in Food Networks.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Mubassira & Machemehl, Randy, 2017. "Commercial vehicles time of day choice behavior in urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 68-83.
    2. Ho, Chinh Q. & Hensher, David A. & Wang, Shangbo, 2020. "Joint estimation of mode and time of day choice accounting for arrival time flexibility, travel time reliability and crowding on public transport," Journal of Transport Geography, Elsevier, vol. 87(C).
    3. Thorhauge, Mikkel & Cherchi, Elisabetta & Rich, Jeppe, 2016. "How flexible is flexible? Accounting for the effect of rescheduling possibilities in choice of departure time for work trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 177-193.
    4. Brey, Raúl & Walker, Joan L., 2011. "Latent temporal preferences: An application to airline travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 880-895, November.
    5. Bwambale, Andrew & Choudhury, Charisma F. & Hess, Stephane, 2019. "Modelling departure time choice using mobile phone data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 424-439.
    6. Badiola, Nicolás & Raveau, Sebastián & Galilea, Patricia, 2019. "Modelling preferences towards activities and their effect on departure time choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 39-51.
    7. Kato, Hironori & Kaneko, Yuichiro & Soyama, Yoshihiko, 2014. "Economic benefits of urban rail projects that improve travel-time reliability: Evidence from Tokyo, Japan," Transport Policy, Elsevier, vol. 35(C), pages 202-210.
    8. José Holguín-Veras & Iván Sánchez-Díaz & Benjamin Reim, 2016. "ETC adoption, time-of-travel choice, and comprehensive policies to enhance time-of-day pricing: a stated preference investigation," Transportation, Springer, vol. 43(2), pages 273-299, March.
    9. Lizana, Pedro & Ortúzar, Juan de Dios & Arellana, Julián & Rizzi, Luis I., 2021. "Forecasting with a joint mode/time-of-day choice model based on combined RP and SC data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 302-316.
    10. Vincent A.C. van den Berg & Erik T. Verhoef, 2015. "Robot Cars and Dynamic Bottleneck Congestion: The Effects on Capacity, Value of Time and Preference Heterogeneity," Tinbergen Institute Discussion Papers 15-062/VIII, Tinbergen Institute, revised 11 Jul 2016.
    11. Xiao, Yu & Fukuda, Daisuke, 2015. "On the cost of misperceived travel time variability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 96-112.
    12. Ghader, Sepehr & Carrion, Carlos & Zhang, Lei, 2019. "Autoregressive continuous logit: Formulation and application to time-of-day choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 240-257.
    13. Andrew Daly & Stephane Hess & Geoff Hyman & John Polak & Charlene Rohr, 2005. "Modelling departure time and mode choice," ERSA conference papers ersa05p688, European Regional Science Association.
    14. Hjorth, Katrine & Börjesson, Maria & Engelson, Leonid & Fosgerau, Mogens, 2015. "Estimating exponential scheduling preferences," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 230-251.
    15. Yi-Shih Chung & Szu-Yu Tu, 2021. "Tri-reference-point hypothesis development for airport ground access behaviors," Transportation, Springer, vol. 48(5), pages 2159-2185, October.
    16. Abegaz, Dereje & Hjorth, Katrine & Rich, Jeppe, 2017. "Testing the slope model of scheduling preferences on stated preference data," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 409-436.
    17. Ettema, Dick & Bastin, Fabian & Polak, John & Ashiru, Olu, 2007. "Modelling the joint choice of activity timing and duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(9), pages 827-841, November.
    18. Ida Kristoffersson & Leonid Engelson, 2018. "Estimating preferred departure times of road users in a large urban network," Transportation, Springer, vol. 45(3), pages 767-787, May.
    19. Marcucci, Edoardo & Gatta, Valerio, 2017. "Investigating the potential for off-hour deliveries in the city of Rome: Retailers’ perceptions and stated reactions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 142-156.
    20. van Cranenburgh, Sander & Chorus, Caspar G., 2018. "Does the decision rule matter for large-scale transport models?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 338-353.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:86:y:2016:i:c:p:20-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.