IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v115y2024ics096669232400005x.html
   My bibliography  Save this article

The importance of recurring public transport delays for accessibility and mode choice

Author

Listed:
  • Nichols, Aaron
  • Ryan, Jean
  • Palmqvist, Carl-William

Abstract

This paper looks at the relationship between recurring public transport delays, accessibility to jobs, and travel behaviour in the region of Scania, Sweden. The difference between potential (scheduled) accessibility, observed (actual) accessibility, and behaviour is an important part of this research. This paper contributes to the growing body of literature that uses GTFS data (for both scheduled and actual services) to provide a deeper understanding of temporal variations in accessibility with public transport. Historic public transport data were used to develop a measure for typical delays in the region. The accessibility analysis shows that, on average, recurring public transport delays result in a 4–9% reduction in accessibility to jobs in the region. The loss in accessibility varied depending on the travel time budget that was considered and the location within the region. The accessibility analysis also shows that areas with higher concentrations of households with a lower economic standard experience a smaller loss in job accessibility caused by public transport delays. However, the concentration of these effects depends on the measure that is used. The measurement of typical delays was also analysed in relation to actual trips from the regional travel survey. The statistical analysis found that recurring public transport delays were associated with a lower likelihood of using public transport compared to other motorised modes.

Suggested Citation

  • Nichols, Aaron & Ryan, Jean & Palmqvist, Carl-William, 2024. "The importance of recurring public transport delays for accessibility and mode choice," Journal of Transport Geography, Elsevier, vol. 115(C).
  • Handle: RePEc:eee:jotrge:v:115:y:2024:i:c:s096669232400005x
    DOI: 10.1016/j.jtrangeo.2024.103796
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096669232400005X
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2024.103796?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cynthia Chen & Hongmian Gong & Robert Paaswell, 2008. "Role of the built environment on mode choice decisions: additional evidence on the impact of density," Transportation, Springer, vol. 35(3), pages 285-299, May.
    2. Chakrabarti, Sandip, 2015. "The demand for reliable transit service: New evidence using stop level data from the Los Angeles Metro bus system," Journal of Transport Geography, Elsevier, vol. 48(C), pages 154-164.
    3. van Wee, Bert, 2016. "Accessible accessibility research challenges," Journal of Transport Geography, Elsevier, vol. 51(C), pages 9-16.
    4. Ahmed El-Geneidy & David Levinson, 2022. "Making accessibility work in practice," Transport Reviews, Taylor & Francis Journals, vol. 42(2), pages 129-133, March.
    5. Bimpou, Konstantina & Ferguson, Neil S., 2020. "Dynamic accessibility: Incorporating day-to-day travel time reliability into accessibility measurement," Journal of Transport Geography, Elsevier, vol. 89(C).
    6. Ho, Chinh Q. & Hensher, David A. & Wang, Shangbo, 2020. "Joint estimation of mode and time of day choice accounting for arrival time flexibility, travel time reliability and crowding on public transport," Journal of Transport Geography, Elsevier, vol. 87(C).
    7. Schwanen, Tim & Mokhtarian, Patricia L., 2005. "What if You Live in the Wrong Neighborhood? The Impact of Residential Neighborhood Type Dissonance on Distance Traveled," University of California Transportation Center, Working Papers qt5hh713d6, University of California Transportation Center.
    8. van Loon, Ruben & Rietveld, Piet & Brons, Martijn, 2011. "Travel-time reliability impacts on railway passenger demand: a revealed preference analysis," Journal of Transport Geography, Elsevier, vol. 19(4), pages 917-925.
    9. Mesbah, Mahmoud & Currie, Graham & Lennon, Claudia & Northcott, Trevor, 2012. "Spatial and temporal visualization of transit operations performance data at a network level," Journal of Transport Geography, Elsevier, vol. 25(C), pages 15-26.
    10. Dea van Lierop & Madhav G. Badami & Ahmed M. El-Geneidy, 2018. "What influences satisfaction and loyalty in public transport? A review of the literature," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 52-72, January.
    11. Papa, Enrica & Bertolini, Luca, 2015. "Accessibility and Transit-Oriented Development in European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 47(C), pages 70-83.
    12. Kaplan, Sigal & Popoks, Dmitrijs & Prato, Carlo Giacomo & Ceder, Avishai (Avi), 2014. "Using connectivity for measuring equity in transit provision," Journal of Transport Geography, Elsevier, vol. 37(C), pages 82-92.
    13. Veronique Acker & Frank Witlox, 2011. "Commuting trips within tours: how is commuting related to land use?," Transportation, Springer, vol. 38(3), pages 465-486, May.
    14. Wessel, Nate & Allen, Jeff & Farber, Steven, 2017. "Constructing a routable retrospective transit timetable from a real-time vehicle location feed and GTFS," Journal of Transport Geography, Elsevier, vol. 62(C), pages 92-97.
    15. Klar, Ben & Lee, Jinhyung & Long, Jed A. & Diab, Ehab, 2023. "The impacts of accessibility measure choice on public transit project evaluation: A comparative study of cumulative, gravity-based, and hybrid approaches," Journal of Transport Geography, Elsevier, vol. 106(C).
    16. Deka, Devajyoti & Carnegie, Jon, 2021. "Predicting transit mode choice of New Jersey workers commuting to New York City from a stated preference survey," Journal of Transport Geography, Elsevier, vol. 91(C).
    17. Dong, Xiaojing & Ben-Akiva, Moshe E. & Bowman, John L. & Walker, Joan L., 2006. "Moving from trip-based to activity-based measures of accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 163-180, February.
    18. Kapatsila, Bogdan & Palacios, Manuel Santana & Grisé, Emily & El-Geneidy, Ahmed, 2023. "Resolving the accessibility dilemma: Comparing cumulative and gravity-based measures of accessibility in eight Canadian cities," Journal of Transport Geography, Elsevier, vol. 107(C).
    19. Wessel, Nate, 2019. "Accessibility Beyond the Schedule," SocArXiv c4yvx, Center for Open Science.
    20. Arbex, Renato & Cunha, Claudio B., 2020. "Estimating the influence of crowding and travel time variability on accessibility to jobs in a large public transport network using smart card big data," Journal of Transport Geography, Elsevier, vol. 85(C).
    21. Fransen, Koos & Neutens, Tijs & Farber, Steven & De Maeyer, Philippe & Deruyter, Greet & Witlox, Frank, 2015. "Identifying public transport gaps using time-dependent accessibility levels," Journal of Transport Geography, Elsevier, vol. 48(C), pages 176-187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Dongyu & Zhang, Yingheng & Xiang, Qiaojun, 2024. "Could improving public transport accessibility reduce road traffic carbon dioxide emissions? A simulation-based counterfactual analysis," Journal of Transport Geography, Elsevier, vol. 119(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javanmard, Reyhane & Lee, Jinhyung & Kim, Kyusik & Park, Jinwoo & Diab, Ehab, 2024. "Evaluating the impacts of supply-demand dynamics and distance decay effects on public transit project assessment: A study of healthcare accessibility and inequalities," Journal of Transport Geography, Elsevier, vol. 116(C).
    2. Zhang, Guozheng & Wang, Dianhai & Cai, Zhengyi & Zeng, Jiaqi, 2024. "Competitiveness of public transit considering travel time reliability: A case study for commuter trips in Hangzhou, China," Journal of Transport Geography, Elsevier, vol. 114(C).
    3. Ben-Elia, Eran & Benenson, Itzhak, 2019. "A spatially-explicit method for analyzing the equity of transit commuters' accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 31-42.
    4. (Ato) Xu, Wangtu & Zhou, Jiangping & Yang, Linchuan & Li, Ling, 2018. "The implications of high-speed rail for Chinese cities: Connectivity and accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 308-326.
    5. Shi, Yuji & Blainey, Simon & Sun, Chao & Jing, Peng, 2020. "A literature review on accessibility using bibliometric analysis techniques," Journal of Transport Geography, Elsevier, vol. 87(C).
    6. Tiznado-Aitken, Ignacio & Lucas, Karen & Muñoz, Juan Carlos & Hurtubia, Ricardo, 2020. "Understanding accessibility through public transport users' experiences: A mixed methods approach," Journal of Transport Geography, Elsevier, vol. 88(C).
    7. Kapatsila, Bogdan & Collins, Damian & Grisé, Emily, 2024. "Assessing mode-specific transport affordability in a car-centric city," Journal of Transport Geography, Elsevier, vol. 114(C).
    8. Sharma, Ishant & Mishra, Sabyasachee & Golias, Mihalis M. & Welch, Timothy F. & Cherry, Christopher R., 2020. "Equity of transit connectivity in Tennessee cities," Journal of Transport Geography, Elsevier, vol. 86(C).
    9. Stępniak, Marcin & Pritchard, John P. & Geurs, Karst T. & Goliszek, Sławomir, 2019. "The impact of temporal resolution on public transport accessibility measurement: Review and case study in Poland," Journal of Transport Geography, Elsevier, vol. 75(C), pages 8-24.
    10. Xu, Minhao & Shuai, Bin & Wang, Xin & Liu, Hongyi & Zhou, Hui, 2023. "Analysis of the accessibility of connecting transport at High-speed rail stations from the perspective of departing passengers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    11. Braga, Carlos Kaue V. & Loureiro, Carlos Felipe Grangeiro & Pereira, Rafael H.M., 2023. "Evaluating the impact of public transport travel time inaccuracy and variability on socio-spatial inequalities in accessibility," Journal of Transport Geography, Elsevier, vol. 109(C).
    12. De Vos, Jonas, 2024. "The ease of travel: A person-based measure of people’s ability to travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).
    13. Carleton, Phillip R. & Porter, J. David, 2018. "A comparative analysis of the challenges in measuring transit equity: definitions, interpretations, and limitations," Journal of Transport Geography, Elsevier, vol. 72(C), pages 64-75.
    14. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    15. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    16. Rui Xiao & Guofeng Wang & Meng Wang, 2018. "Transportation Disadvantage and Neighborhood Sociodemographics: A Composite Indicator Approach to Examining Social Inequalities," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 137(1), pages 29-43, May.
    17. Scheiner, Joachim, 2010. "Social inequalities in travel behaviour: trip distances in the context of residential self-selection and lifestyles," Journal of Transport Geography, Elsevier, vol. 18(6), pages 679-690.
    18. Helai Huang & Jialing Wu & Fang Liu & Yiwei Wang, 2020. "Measuring Accessibility Based on Improved Impedance and Attractive Functions Using Taxi Trajectory Data," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    19. Shasha Liu & Toshiyuki Yamamoto & Enjian Yao, 2023. "Joint modeling of mode choice and travel distance with intra-household interactions," Transportation, Springer, vol. 50(5), pages 1527-1552, October.
    20. Guzman, Luis A. & Cantillo-Garcia, Victor A. & Oviedo, Daniel & Arellana, Julian, 2023. "How much is accessibility worth? Utility-based accessibility to evaluate transport policies," Journal of Transport Geography, Elsevier, vol. 112(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:115:y:2024:i:c:s096669232400005x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.