IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwrsa/ersa05p688.html
   My bibliography  Save this paper

Modelling departure time and mode choice

Author

Listed:
  • Andrew Daly
  • Stephane Hess
  • Geoff Hyman
  • John Polak
  • Charlene Rohr

Abstract

As a result of increasing road congestion and road pricing, modelling the temporal response of travellers to transport policy interventions has rapidly emerged as a major issue in many practical transport planning studies. A substantial body of research is therefore being carried out to understand the complexities involved in modelling time of day choice. These models are contributing substantially to our understanding of how travellers make time-of-day decisions (Hess et al, 2004; de Jong et al, 2003). These models, however, tend to be far too complex and far too data intensive to be of use for application in large-scale modelling forecasting systems, where socio-economic detail is limited and detailed scheduling information is rarely available. Moreover, model systems making use of the some of the latest analytical structures, such as Mixed Logit, are generally inapplicable in practical planning, since they rely on computer-intensive simulation in application just as well as in estimation. The aim of this paper, therefore, is to describe the development of time-period choice models which are suitable for application in large-scale modelling forecasting systems. Large-scale practical planning models often rely on systems of nested logit models, which can incorporate many of the most important interactions that are present in the complex models but which have low enough run-times to allow them to be used for practical planning. In these systems, temporal choice is represented as the choice between a finite set of discrete alternatives, represented by mutually exclusive time-periods that are obtained by aggregation of the actual observed continuous time values. The issues that face modellers are then: -how should the time periods be defined, and in particular how long should they be? -how should the choices of time periods be related to each other, e.g. is the elasticity for shorter shifts greater than for longer shifts? -how should time period choice be placed in the model system relative to other choices, such as that of the mode of travel? These questions cannot be answered on a purely theoretical basis but require the analysis of empirical data. However, there is not a great deal of data available on the relevant choices. The time period models described in the paper are developed from three related stated preference (SP) studies undertaken over the past decade in the United Kingdom and the Netherlands. Because of the complications involved with using advanced models in large-scale modelling forecasting systems, the model structures are limited to nested logit models. Two different tree structures are explored in the analysis, nesting mode above time period choice or time period choice above mode. The analysis examines how these structures differ by data set, purpose of travel and time period specification. Three time period specifications were tested, dividing the 24-hour day into: -twenty-four 1-hour periods; -five coarse time-periods; -sixteen 15-minute morning-peak periods, and two coarse pre-peak and post-peak periods. In each case, the time periods are used to define both the outbound and the return trip timings. The analysis shows that, with a few exceptions, the nested models outperform the basic Multinomial Logit structures, which operate under the assumption of equal substitution patterns across alternatives. With a single exception, the nested models in turn show higher substitution between alternative time periods than between alternative modes, showing that, for all the time period lengths studied, travellers are more sensitive to transport levels of service in their choice of departure time than in choice of mode. The advantages of the nesting structures are especially pronounced in the 1-hour and 15-minute models, while, in the coarse time-period models, the MNL model often remains the preferred structure; this is a clear effect of the broader time-periods, and the consequently lower substitution between time-periods.

Suggested Citation

  • Andrew Daly & Stephane Hess & Geoff Hyman & John Polak & Charlene Rohr, 2005. "Modelling departure time and mode choice," ERSA conference papers ersa05p688, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa05p688
    as

    Download full text from publisher

    File URL: https://www-sre.wu.ac.at/ersa/ersaconfs/ersa05/papers/688.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Small, Kenneth A, 1987. "A Discrete Choice Model for Ordered Alternatives," Econometrica, Econometric Society, vol. 55(2), pages 409-424, March.
    2. Bhat, Chandra R., 1998. "Analysis of travel mode and departure time choice for urban shopping trips," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 361-371, August.
    3. H C W L Williams, 1977. "On the Formation of Travel Demand Models and Economic Evaluation Measures of User Benefit," Environment and Planning A, , vol. 9(3), pages 285-344, March.
    4. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    5. Daniel McFadden, 1977. "Modelling the Choice of Residential Location," Cowles Foundation Discussion Papers 477, Cowles Foundation for Research in Economics, Yale University.
    6. Fred L. Mannering & Sameer A. Abu-Eisheh & Audur T. Arnadottir, 1990. "Dynamic Traffic Equilibrium with Discrete/Continuous Econometric Models," Transportation Science, INFORMS, vol. 24(2), pages 105-116, May.
    7. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    8. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    9. de Jong, Gerard & Daly, Andrew & Pieters, Marits & Vellay, Carine & Bradley, Mark & Hofman, Frank, 2003. "A model for time of day and mode choice using error components logit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(3), pages 245-268, May.
    10. Bhat, Chandra R. & Steed, Jennifer L., 2002. "A continuous-time model of departure time choice for urban shopping trips," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 207-224, March.
    11. Wang, James Jixian, 1996. "Timing utility of daily activities and its impact on travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(3), pages 189-206, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Börjesson, Maria & Rushid, Ajsuna R. & Liu, Chengxi, 2021. "The impact of optimal rail access charges on frequencies and fares," Economics of Transportation, Elsevier, vol. 26.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephane Hess & John Polak & Andrew Daly & Geoffrey Hyman, 2007. "Flexible substitution patterns in models of mode and time of day choice: new evidence from the UK and the Netherlands," Transportation, Springer, vol. 34(2), pages 213-238, March.
    2. Lizana, Pedro & Ortúzar, Juan de Dios & Arellana, Julián & Rizzi, Luis I., 2021. "Forecasting with a joint mode/time-of-day choice model based on combined RP and SC data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 302-316.
    3. Khan, Mubassira & Machemehl, Randy, 2017. "Commercial vehicles time of day choice behavior in urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 68-83.
    4. Lemp, Jason D. & Kockelman, Kara M. & Damien, Paul, 2010. "The continuous cross-nested logit model: Formulation and application for departure time choice," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 646-661, June.
    5. Brey, Raúl & Walker, Joan L., 2011. "Latent temporal preferences: An application to airline travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 880-895, November.
    6. Kato, Hironori & Kaneko, Yuichiro & Soyama, Yoshihiko, 2014. "Economic benefits of urban rail projects that improve travel-time reliability: Evidence from Tokyo, Japan," Transport Policy, Elsevier, vol. 35(C), pages 202-210.
    7. Jason D. Lemp & Kara M. Kockelman & Paul Damien, 2012. "A Bivariate Multinomial Probit Model for Trip Scheduling: Bayesian Analysis of the Work Tour," Transportation Science, INFORMS, vol. 46(3), pages 405-424, August.
    8. Nurul Habib, Khandker M. & Day, Nicholas & Miller, Eric J., 2009. "An investigation of commuting trip timing and mode choice in the Greater Toronto Area: Application of a joint discrete-continuous model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(7), pages 639-653, August.
    9. Peer, Stefanie & Knockaert, Jasper & Koster, Paul & Tseng, Yin-Yen & Verhoef, Erik T., 2013. "Door-to-door travel times in RP departure time choice models: An approximation method using GPS data," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 134-150.
    10. Ghader, Sepehr & Carrion, Carlos & Zhang, Lei, 2019. "Autoregressive continuous logit: Formulation and application to time-of-day choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 240-257.
    11. Bwambale, Andrew & Choudhury, Charisma F. & Hess, Stephane, 2019. "Modelling departure time choice using mobile phone data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 424-439.
    12. Zhang, Xiaoning & Yang, Hai & Huang, Hai-Jun & Zhang, H. Michael, 2005. "Integrated scheduling of daily work activities and morning-evening commutes with bottleneck congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(1), pages 41-60, January.
    13. Stephane Hess & Denis Bolduc & John Polak, 2010. "Random covariance heterogeneity in discrete choice models," Transportation, Springer, vol. 37(3), pages 391-411, May.
    14. Bhat, Chandra R. & Guo, Jessica, 2004. "A mixed spatially correlated logit model: formulation and application to residential choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 147-168, February.
    15. José Holguín-Veras & Iván Sánchez-Díaz & Benjamin Reim, 2016. "ETC adoption, time-of-travel choice, and comprehensive policies to enhance time-of-day pricing: a stated preference investigation," Transportation, Springer, vol. 43(2), pages 273-299, March.
    16. Hess, Stephane & Daly, Andrew & Rohr, Charlene & Hyman, Geoff, 2007. "On the development of time period and mode choice models for use in large scale modelling forecasting systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(9), pages 802-826, November.
    17. Thorhauge, Mikkel & Cherchi, Elisabetta & Rich, Jeppe, 2016. "How flexible is flexible? Accounting for the effect of rescheduling possibilities in choice of departure time for work trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 177-193.
    18. Ho, Chinh Q. & Hensher, David A. & Wang, Shangbo, 2020. "Joint estimation of mode and time of day choice accounting for arrival time flexibility, travel time reliability and crowding on public transport," Journal of Transport Geography, Elsevier, vol. 87(C).
    19. de Jong, Gerard & Kouwenhoven, Marco & Ruijs, Kim & van Houwe, Pieter & Borremans, Dana, 2016. "A time-period choice model for road freight transport in Flanders based on stated preference data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 20-31.
    20. Lim, Yongtaek & Heydecker, Benjamin, 2005. "Dynamic departure time and stochastic user equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 97-118, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa05p688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gunther Maier (email available below). General contact details of provider: http://www.ersa.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.