IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v32y1998i7p455-466.html
   My bibliography  Save this article

Accommodating flexible substitution patterns in multi-dimensional choice modeling: formulation and application to travel mode and departure time choice

Author

Listed:
  • Bhat, Chandra R.

Abstract

The nested logit model has been used extensively to model multi-dimensional choice situations. A drawback of the nested logit model is that it does not allow choice alternatives to share common unobserved attributes along all the dimensions characterizing the multidimensional choice context. This paper formulates a mixed multinomial logit structure that accommodates unobserved correlation across both dimensions in a two-dimensional choice context. The mixed multinomial logit structure is parsimonious in the number of parameters to be estimated and is also relatively easy to estimate using simulation methods. The mixed multinomial logit model is applied to an analysis of travel mode and departure time choice for home-based social-recreational trips using data drawn from the 1990 San Francisco Bay Area household survey. The empirical results underscore the need to capture unobserved attributes along both the mode and departure time dimensions, both for improved data fit as well as for more realistic policy evaluations of transportation control measures.

Suggested Citation

  • Bhat, Chandra R., 1998. "Accommodating flexible substitution patterns in multi-dimensional choice modeling: formulation and application to travel mode and departure time choice," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 455-466, September.
  • Handle: RePEc:eee:transb:v:32:y:1998:i:7:p:455-466
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(98)00011-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Lung-Fei, 1992. "On Efficiency of Methods of Simulated Moments and Maximum Simulated Likelihood Estimation of Discrete Response Models," Econometric Theory, Cambridge University Press, vol. 8(4), pages 518-552, December.
    2. McFadden, Daniel & Ruud, Paul A, 1994. "Estimation by Simulation," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 591-608, November.
    3. Koppelman, Frank S. & Pas, Eric I., 1986. "Multidimensional choice model transferability," Transportation Research Part B: Methodological, Elsevier, vol. 20(4), pages 321-330, August.
    4. Swait, Joffre & Ben-Akiva, Moshe, 1987. "Empirical test of a constrained choice discrete model: Mode choice in São Paulo, Brazil," Transportation Research Part B: Methodological, Elsevier, vol. 21(2), pages 103-115, April.
    5. Kenneth Train, 1980. "A Structured Logit Model of Auto Ownership and Mode Choice," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(2), pages 357-370.
    6. Mannering, Fred L., 1989. "Poisson analysis of commuter flexibility in changing routes and departure times," Transportation Research Part B: Methodological, Elsevier, vol. 23(1), pages 53-60, February.
    7. Bhat, Chandra R., 1995. "A heteroscedastic extreme value model of intercity travel mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 29(6), pages 471-483, December.
    8. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    9. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    10. Bhat, Chandra R. & Koppelman, Frank S., 1993. "A conceptual framework of individual activity program generation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(6), pages 433-446, November.
    11. Horowitz, Joel L., 1991. "Reconsidering the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 433-438, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Can, Vo Van, 2013. "Estimation of travel mode choice for domestic tourists to Nha Trang using the multinomial probit model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 149-159.
    2. Bhat, Chandra R., 1998. "Analysis of travel mode and departure time choice for urban shopping trips," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 361-371, August.
    3. Bhat, Chandra R. & Castelar, Saul, 2002. "A unified mixed logit framework for modeling revealed and stated preferences: formulation and application to congestion pricing analysis in the San Francisco Bay area," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 593-616, August.
    4. David Revelt and Kenneth Train., 2000. "Customer-Specific Taste Parameters and Mixed Logit: Households' Choice of Electricity Supplier," Economics Working Papers E00-274, University of California at Berkeley.
    5. Brownstone, David & Train, Kenneth, 1998. "Forecasting new product penetration with flexible substitution patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
    6. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
    7. Karthik K. Srinivasan & Hani S. Mahmassani, 2005. "A Dynamic Kernel Logit Model for the Analysis of Longitudinal Discrete Choice Data: Properties and Computational Assessment," Transportation Science, INFORMS, vol. 39(2), pages 160-181, May.
    8. Chandra R. Bhat, 2000. "Incorporating Observed and Unobserved Heterogeneity in Urban Work Travel Mode Choice Modeling," Transportation Science, INFORMS, vol. 34(2), pages 228-238, May.
    9. Bhat, Chandra & Zhao, Huimin, 2002. "The spatial analysis of activity stop generation," Transportation Research Part B: Methodological, Elsevier, vol. 36(6), pages 557-575, July.
    10. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    11. Bhat, Chandra R. & Sardesai, Rupali, 2006. "The impact of stop-making and travel time reliability on commute mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 709-730, November.
    12. Domanski, Adam, 2009. "Estimating Mixed Logit Recreation Demand Models With Large Choice Sets," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49413, Agricultural and Applied Economics Association.
    13. Ton, Danique & Bekhor, Shlomo & Cats, Oded & Duives, Dorine C. & Hoogendoorn-Lanser, Sascha & Hoogendoorn, Serge P., 2020. "The experienced mode choice set and its determinants: Commuting trips in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 744-758.
    14. Darren Hudson & Karina Gallardo & Terry Hanson, 2005. "Hypothetical (Non)Bias In Choice Experiments: Evidence From Freshwater Prawns," Experimental 0503003, University Library of Munich, Germany.
    15. Gustavo Ahumada & Victor Iturra & Mauricio Sarrias, 2020. "We Do Not Have the Same Tastes! Evaluating Individual Heterogeneity in the Preferences for Amenities," Journal of Happiness Studies, Springer, vol. 21(1), pages 53-74, January.
    16. Lee, Lung-Fei, 1997. "Simulated maximum likelihood estimation of dynamic discrete choice statistical models some Monte Carlo results," Journal of Econometrics, Elsevier, vol. 82(1), pages 1-35.
    17. Viteri Mejía, César & Brandt, Sylvia, 2015. "Managing tourism in the Galapagos Islands through price incentives: A choice experiment approach," Ecological Economics, Elsevier, vol. 117(C), pages 1-11.
    18. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    19. Robert Bartels & Denzil Fiebig & Arthur Soest, 2006. "Consumers and experts: an econometric analysis of the demand for water heaters," Empirical Economics, Springer, vol. 31(2), pages 369-391, June.
    20. Joan L. Walker & Moshe Ben-Akiva & Denis Bolduc, 2007. "Identification of parameters in normal error component logit-mixture (NECLM) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(6), pages 1095-1125.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:32:y:1998:i:7:p:455-466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.