IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v82y2020ics0966692319304673.html
   My bibliography  Save this article

Inter-city connections in China: High-speed train vs. inter-city coach

Author

Listed:
  • Wang, Jiaoe
  • Du, Delin
  • Huang, Jie

Abstract

High-speed train (HST) and inter-city coach (ICC) have been two important ground transportation modes for travelling between cities in China. They influence inter-city connections significantly. This study uses HST's and ICC's timetable data to construct networks; evaluates city centrality and city-pair connectivity to compare the hierarchical structures. The results show that the HST network shows linear distribution characteristics while ICC network presents regional “core-periphery” structure. Provincial administrative boundaries have an obvious constraint on the ICC network, while the HST community structure follows the railway lines' distribution. Finally, this study illustrates the spatial organization model and gives implications for regional transportation planning.

Suggested Citation

  • Wang, Jiaoe & Du, Delin & Huang, Jie, 2020. "Inter-city connections in China: High-speed train vs. inter-city coach," Journal of Transport Geography, Elsevier, vol. 82(C).
  • Handle: RePEc:eee:jotrge:v:82:y:2020:i:c:s0966692319304673
    DOI: 10.1016/j.jtrangeo.2019.102619
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692319304673
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2019.102619?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Levinson, David M., 2012. "Accessibility impacts of high-speed rail," Journal of Transport Geography, Elsevier, vol. 22(C), pages 288-291.
    2. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    3. Yang, Haoran & Dobruszkes, Frédéric & Wang, Jiaoe & Dijst, Martin & Witte, Patrick, 2018. "Comparing China's urban systems in high-speed railway and airline networks," Journal of Transport Geography, Elsevier, vol. 68(C), pages 233-244.
    4. Jiao, Jingjuan & Wang, Jiaoe & Jin, Fengjun, 2017. "Impacts of high-speed rail lines on the city network in China," Journal of Transport Geography, Elsevier, vol. 60(C), pages 257-266.
    5. Derudder, Ben & Witlox, Frank, 2009. "The impact of progressive liberalization on the spatiality of airline networks: a measurement framework based on the assessment of hierarchical differentiation," Journal of Transport Geography, Elsevier, vol. 17(4), pages 276-284.
    6. Roger Vickerman, 1997. "High-speed rail in Europe: experience and issues for future development," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 31(1), pages 21-38.
    7. Haoran Yang & Martin Dijst & Patrick Witte & Hans Van Ginkel & Weiling Yang, 2018. "The Spatial Structure of High Speed Railways and Urban Networks in China: A Flow Approach," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 109(1), pages 109-128, February.
    8. Campos, Javier & de Rus, Ginés, 2009. "Some stylized facts about high-speed rail: A review of HSR experiences around the world," Transport Policy, Elsevier, vol. 16(1), pages 19-28, January.
    9. Tirachini, Alejandro & Hensher, David A. & Jara-Díaz, Sergio R., 2010. "Restating modal investment priority with an improved model for public transport analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 1148-1168, November.
    10. David Gillen & David Levinson & Jean Michel Mathieu & Adib Kanafani, 1997. "The full cost of high-speed rail: an engineering approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 31(2), pages 189-215.
    11. Moshe Givoni & Frédéric Dobruszkes, 2013. "A Review of Ex-Post Evidence for Mode Substitution and Induced Demand Following the Introduction of High-Speed Rail," Transport Reviews, Taylor & Francis Journals, vol. 33(6), pages 720-742, November.
    12. Shaw, Shih-Lung & Fang, Zhixiang & Lu, Shiwei & Tao, Ran, 2014. "Impacts of high speed rail on railroad network accessibility in China," Journal of Transport Geography, Elsevier, vol. 40(C), pages 112-122.
    13. Vicente Inglada & GinÊs de Rus, 1997. "Cost-benefit analysis of the high-speed train in Spain," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 31(2), pages 175-188.
    14. Wang, Jiaoe & Mo, Huihui & Wang, Fahui & Jin, Fengjun, 2011. "Exploring the network structure and nodal centrality of China’s air transport network: A complex network approach," Journal of Transport Geography, Elsevier, vol. 19(4), pages 712-721.
    15. Andrew K. Copus, 2001. "From Core-periphery to Polycentric Development: Concepts of Spatial and Aspatial Peripherality," European Planning Studies, Taylor & Francis Journals, vol. 9(4), pages 539-552, June.
    16. Moshe Givoni & Frédéric Dobruszkes, 2013. "A Review of Ex-Post Evidence for Mode Substitution and Induced Demand Following the Introduction of High-Speed Rail," ULB Institutional Repository 2013/152140, ULB -- Universite Libre de Bruxelles.
    17. Cheng, Yung-Hsiang, 2010. "High-speed rail in Taiwan: New experience and issues for future development," Transport Policy, Elsevier, vol. 17(2), pages 51-63, March.
    18. Kotavaara, Ossi & Antikainen, Harri & Rusanen, Jarmo, 2011. "Population change and accessibility by road and rail networks: GIS and statistical approach to Finland 1970–2007," Journal of Transport Geography, Elsevier, vol. 19(4), pages 926-935.
    19. Haoran Yang & Frédéric Dobruszkes & Jiaoe Wang & Martin Dijst & Patrick Wiik, 2018. "Comparing China's urban systems in high-speed railway and airline networks," ULB Institutional Repository 2013/269363, ULB -- Universite Libre de Bruxelles.
    20. Jiao, Jingjuan & Wang, Jiaoe & Jin, Fengjun & Dunford, Michael, 2014. "Impacts on accessibility of China’s present and future HSR network," Journal of Transport Geography, Elsevier, vol. 40(C), pages 123-132.
    21. Wenqian Ke & Wei Chen & Zhaoyuan Yu, 2017. "Uncovering Spatial Structures of Regional City Networks from Expressway Traffic Flow Data: A Case Study from Jiangsu Province, China," Sustainability, MDPI, vol. 9(9), pages 1-16, August.
    22. Edward J. Malecki, 2002. "The Economic Geography of the Internet’s Infrastructure," Economic Geography, Taylor & Francis Journals, vol. 78(4), pages 399-424, October.
    23. Hou, Quan & Li, Si-Ming, 2011. "Transport infrastructure development and changing spatial accessibility in the Greater Pearl River Delta, China, 1990–2020," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1350-1360.
    24. Ching-chih Chou & Chien-wen Shen, 2018. "An exploration of the competitive relationship between intercity transport systems," Transportation Planning and Technology, Taylor & Francis Journals, vol. 41(2), pages 186-197, February.
    25. Hu, Xinlei & Huang, Jie & Shi, Feng, 2019. "Circuity in China's high-speed-rail network," Journal of Transport Geography, Elsevier, vol. 80(C).
    26. Perl, Anthony D. & Goetz, Andrew R., 2015. "Corridors, hybrids and networks: three global development strategies for high speed rail," Journal of Transport Geography, Elsevier, vol. 42(C), pages 134-144.
    27. Ortega, Emilio & López, Elena & Monzón, Andrés, 2012. "Territorial cohesion impacts of high-speed rail at different planning levels," Journal of Transport Geography, Elsevier, vol. 24(C), pages 130-141.
    28. Moshe Givoni, 2006. "Development and Impact of the Modern High‐speed Train: A Review," Transport Reviews, Taylor & Francis Journals, vol. 26(5), pages 593-611, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Haoran & Du, Delin & Wang, Jiaoe & Wang, Xiaomeng & Zhang, Fan, 2023. "Reshaping China's urban networks and their determinants: High-speed rail vs. air networks," Transport Policy, Elsevier, vol. 143(C), pages 83-92.
    2. Huang, Yan & Zong, Huiming, 2022. "The intercity railway connections in China: A comparative analysis of high-speed train and conventional train services," Transport Policy, Elsevier, vol. 120(C), pages 89-103.
    3. Niu, Fangqu & Xin, Zhongling & Sun, Dongqi, 2021. "Urban land use effects of high-speed railway network in China: A spatial spillover perspective," Land Use Policy, Elsevier, vol. 105(C).
    4. Haoran Zhang & Ying Chai & Xuyu Yang & Wenli Zhao, 2022. "High-Speed Rail and Urban Growth Disparity: Evidence from China," Sustainability, MDPI, vol. 14(13), pages 1-13, July.
    5. Cheng, Junmei & Chen, Zhenhua, 2021. "Impact of high-speed rail on the operational capacity of conventional rail in China," Transport Policy, Elsevier, vol. 110(C), pages 354-367.
    6. Li, Tao & Wang, Jiaoe & Huang, Jie & Yang, Wenyue & Chen, Zhuo, 2021. "Exploring the dynamic impacts of COVID-19 on intercity travel in China," Journal of Transport Geography, Elsevier, vol. 95(C).
    7. Xu, Minhao & Shuai, Bin & Wang, Xin & Liu, Hongyi & Zhou, Hui, 2023. "Analysis of the accessibility of connecting transport at High-speed rail stations from the perspective of departing passengers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    8. Tian, Meng & Wang, Yiwei & Wang, Yiran, 2023. "High-speed rail network and urban agglomeration economies: Research from the perspective of urban network externalities," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    9. Shengqiang Jing & Yueguan Yan & Fangqu Niu & Wenhui Song, 2022. "Urban Expansion in China: Spatiotemporal Dynamics and Determinants," Land, MDPI, vol. 11(3), pages 1-16, February.
    10. Wang, Hongzheng & Lu, Xinhai & Feng, Lianyue & Yuan, Zhihang & Tang, Yifeng & Jiang, Xu, 2023. "Dynamic change and evolutionary mechanism of city land leasing network—Taking the Yangtze River Delta region in China as an example," Land Use Policy, Elsevier, vol. 132(C).
    11. Chen, Yu & Lu, Yuqi & Jin, Cheng, 2024. "Spatiotemporal differentiation calendar for car and truck flow on expressways: A case study of Jiangsu, China," Journal of Transport Geography, Elsevier, vol. 116(C).
    12. Liu, Xize & Chen, Wendong & Chen, Xuewu & Chen, Jingxu & Cheng, Long, 2023. "Analyzing sustainable competitiveness of inter-city coach from the impact of high-speed railway opening in Jiangsu Province, China," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    13. Chen, Wendong & Chen, Xuewu & Cheng, Long & Liu, Xize & Chen, Jingxu, 2022. "Delineating borders of urban activity zones with free-floating bike sharing spatial interaction network," Journal of Transport Geography, Elsevier, vol. 104(C).
    14. Chen, Zhuo & Wang, Jiaoe & Li, Yongling, 2022. "Intercity connections by expressway in metropolitan areas: Passenger vs. cargo flow," Journal of Transport Geography, Elsevier, vol. 98(C).
    15. Chen, Fanglin & Chen, Zhongfei, 2023. "High-speed rail and happiness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    16. Huang, Yan & Zong, Huiming, 2020. "The spatial distribution and determinants of China’s high-speed train services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 56-70.
    17. Cao, Yu & Hua, Zesu & Chen, Ting & Li, Xiaoying & Li, Heng & Tao, Dingtian, 2023. "Understanding population movement and the evolution of urban spatial patterns: An empirical study on social network fusion data," Land Use Policy, Elsevier, vol. 125(C).
    18. Zhang, Yahua & Zhang, Anming & Wang, Jiaoe, 2020. "Exploring the roles of high-speed train, air and coach services in the spread of COVID-19 in China," Transport Policy, Elsevier, vol. 94(C), pages 34-42.
    19. Panayotis Christidis & Aris Christodoulou, 2020. "The Predictive Capacity of Air Travel Patterns during the Global Spread of the COVID-19 Pandemic: Risk, Uncertainty and Randomness," IJERPH, MDPI, vol. 17(10), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yan & Zong, Huiming, 2022. "The intercity railway connections in China: A comparative analysis of high-speed train and conventional train services," Transport Policy, Elsevier, vol. 120(C), pages 89-103.
    2. Huang, Yan & Zong, Huiming, 2020. "The spatial distribution and determinants of China’s high-speed train services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 56-70.
    3. Wang, Lei, 2018. "High-speed rail services development and regional accessibility restructuring in megaregions: A case of the Yangtze River Delta, China," Transport Policy, Elsevier, vol. 72(C), pages 34-44.
    4. Borsati, Mattia & Albalate, Daniel, 2020. "On the modal shift from motorway to high-speed rail: evidence from Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 145-164.
    5. Yang, Haoran & Du, Delin & Wang, Jiaoe & Wang, Xiaomeng & Zhang, Fan, 2023. "Reshaping China's urban networks and their determinants: High-speed rail vs. air networks," Transport Policy, Elsevier, vol. 143(C), pages 83-92.
    6. Chen, Xiaoyan & Liu, Yisheng, 2020. "Visualization analysis of high-speed railway research based on CiteSpace," Transport Policy, Elsevier, vol. 85(C), pages 1-17.
    7. Dobruszkes, Frédéric & Dehon, Catherine & Givoni, Moshe, 2014. "Does European high-speed rail affect the current level of air services? An EU-wide analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 461-475.
    8. Mohsen Momenitabar & Raj Bridgelall & Zhila Dehdari Ebrahimi & Mohammad Arani, 2021. "Literature Review of Socioeconomic and Environmental Impacts of High-Speed Rail in the World," Sustainability, MDPI, vol. 13(21), pages 1-27, November.
    9. Zhao, Yun & Yu, Hongbo, 2018. "A door-to-door travel time approach for evaluating modal competition of intercity travel: A focus on the proposed Dallas-Houston HSR route," Journal of Transport Geography, Elsevier, vol. 72(C), pages 13-22.
    10. Kim, Hyojin & Sultana, Selima & Weber, Joe, 2018. "A geographic assessment of the economic development impact of Korean high-speed rail stations," Transport Policy, Elsevier, vol. 66(C), pages 127-137.
    11. Mohsen Momenitabar & Zhila Dehdari Ebrahimi & Mohammad Arani, 2020. "A Systematic and Analytical Review of the Socioeconomic and Environmental Impact of the Deployed High-Speed Rail (HSR) Systems on the World," Papers 2003.04452, arXiv.org, revised Mar 2020.
    12. Daniel Albalate & Mattia Borsati, 2019. "“On the modal shift from motorway to high-speed rail: evidence from Italy”," IREA Working Papers 201910, University of Barcelona, Research Institute of Applied Economics, revised Jun 2019.
    13. Liu, Shuli & Wan, Yulai & Zhang, Anming, 2020. "Does China’s high-speed rail development lead to regional disparities? A network perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 299-321.
    14. Daniel Albalate & Germá Bel, 2015. "La experiencia internacional en alta velocidad ferroviaria," Working Papers 2015-02, FEDEA.
    15. Weichen Liu & Jiaying Guo & Wei Wu & Youhui Cao, 2022. "The evolution of regional spatial structure influenced by passenger rail service: A case study of the Yangtze River Delta," Growth and Change, Wiley Blackwell, vol. 53(2), pages 651-679, June.
    16. Xu, Wangtu (Ato) & Long, Ying & Zhang, Wei, 2019. "Prioritizing future funding and construction of the planned high-speed rail corridors of China – According to regional structure and urban land development potential indices," Transport Policy, Elsevier, vol. 81(C), pages 381-395.
    17. Yang, Haoran & Dobruszkes, Frédéric & Wang, Jiaoe & Dijst, Martin & Witte, Patrick, 2018. "Comparing China's urban systems in high-speed railway and airline networks," Journal of Transport Geography, Elsevier, vol. 68(C), pages 233-244.
    18. Wang, Wei & Cai, Kaiquan & Du, Wenbo & Wu, Xin & Tong, Lu (Carol) & Zhu, Xi & Cao, Xianbin, 2020. "Analysis of the Chinese railway system as a complex network," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    19. Liang, Yutian & Zhou, Keyang & Li, Xun & Zhou, Zhengke & Sun, Wei & Zeng, Jiaqi, 2020. "Effectiveness of high-speed railway on regional economic growth for less developed areas," Journal of Transport Geography, Elsevier, vol. 82(C).
    20. Tho V. Le & Junyi Zhang & Makoto Chikaraishi & Akimasa Fujiwara, 2018. "Influence of High-Speed Railway System on Inter-city Travel Behavior in Vietnam," Papers 1812.04184, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:82:y:2020:i:c:s0966692319304673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.